These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 27351126)

  • 1. Wettability on Inner and Outer Surface of Single Carbon Nanotubes.
    Yamada Y; Takahashi K; Takata Y; Sefiane K
    Langmuir; 2016 Jul; 32(28):7064-9. PubMed ID: 27351126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of confinement inside carbon nanotubes on catalysis.
    Pan X; Bao X
    Acc Chem Res; 2011 Aug; 44(8):553-62. PubMed ID: 21707038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Line Tension and Wettability of Nanodrops on Curved Surfaces.
    Maheshwari S; van der Hoef M; Lohse D
    Langmuir; 2016 Jan; 32(1):316-21. PubMed ID: 26654333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental determination of the diameter-dependent wettability of carbon nanotubes as studied using atomic force microscopy.
    Imadate K; Hirahara K
    Phys Chem Chem Phys; 2018 Oct; 20(42):26979-26985. PubMed ID: 30328447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface topography effects in protein adsorption on nanostructured carbon allotropes.
    Raffaini G; Ganazzoli F
    Langmuir; 2013 Apr; 29(15):4883-93. PubMed ID: 23517008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable Wettability Control of Nanoporous Microstructures by iCVD Coating of Carbon Nanotubes.
    Sojoudi H; Kim S; Zhao H; Annavarapu RK; Mariappan D; Hart AJ; McKinley GH; Gleason KK
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43287-43299. PubMed ID: 29131948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver nanoparticles supported on carbon nanotube carpets: influence of surface functionalization.
    Karumuri AK; Oswal DP; Hostetler HA; Mukhopadhyay SM
    Nanotechnology; 2016 Apr; 27(14):145603. PubMed ID: 26916727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characteristics, wettability properties and cytotoxic effect of starch film incorporated with multi-walled and hydroxylated multi-walled carbon nanotubes.
    Shahbazi M; Rajabzadeh G; Sotoodeh S
    Int J Biol Macromol; 2017 Nov; 104(Pt A):597-605. PubMed ID: 28601644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Observation of Wetting Ionic Liquid on a Carbon Nanotube.
    Imadate K; Hirahara K
    Langmuir; 2016 Mar; 32(11):2675-8. PubMed ID: 26923157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coalescence-Induced Swift Jumping of Nanodroplets on Curved Surfaces.
    He X; Zhao L; Cheng J
    Langmuir; 2019 Jul; 35(30):9979-9987. PubMed ID: 31282161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact angles on spherical surfaces.
    Extrand CW; Moon SI
    Langmuir; 2008 Sep; 24(17):9470-3. PubMed ID: 18642935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thickness, stability and contact angle of liquid films on and inside nanofibres, nanotubes and nanochannels.
    Mattia D; Starov V; Semenov S
    J Colloid Interface Sci; 2012 Oct; 384(1):149-56. PubMed ID: 22809548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Curvature-dependent adsorption of water inside and outside armchair carbon nanotubes.
    Lei S; Paulus B; Li S; Schmidt B
    J Comput Chem; 2016 May; 37(14):1313-20. PubMed ID: 26988176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wetting of carbon nanotubes by aluminum oxide.
    Balani K; Agarwal A
    Nanotechnology; 2008 Apr; 19(16):165701. PubMed ID: 21825653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From two-dimension to one-dimension: the curvature effect of silicon-doped graphene and carbon nanotubes for oxygen reduction reaction.
    Zhang P; Hou X; Mi J; He Y; Lin L; Jiang Q; Dong M
    Phys Chem Chem Phys; 2014 Sep; 16(33):17479-86. PubMed ID: 25020255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water Confined in Hydrophobic Cup-Stacked Carbon Nanotubes beyond Surface-Tension Dominance.
    Li QY; Matsushita R; Tomo Y; Ikuta T; Takahashi K
    J Phys Chem Lett; 2019 Jul; 10(13):3744-3749. PubMed ID: 31244269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of graphitization on the wettability and electrical conductivity of CVD-carbon nanotubes and films.
    Mattia D; Rossi MP; Kim BM; Korneva G; Bau HH; Gogotsi Y
    J Phys Chem B; 2006 May; 110(20):9850-5. PubMed ID: 16706438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the Intrinsic Water Wettability of Graphite Using Contact Angle Measurements: Effect of Defects on Static and Dynamic Contact Angles.
    Kozbial A; Trouba C; Liu H; Li L
    Langmuir; 2017 Jan; 33(4):959-967. PubMed ID: 28071919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of zero contact angle ultra-super hydrophilic surfaces.
    Jothi Prakash CG; Clement Raj C; Prasanth R
    J Colloid Interface Sci; 2017 Jun; 496():300-310. PubMed ID: 28237748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.