These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 27351273)

  • 1. Tuning Chemical Potential Difference across Alternately Doped Graphene p-n Junctions for High-Efficiency Photodetection.
    Lin L; Xu X; Yin J; Sun J; Tan Z; Koh AL; Wang H; Peng H; Chen Y; Liu Z
    Nano Lett; 2016 Jul; 16(7):4094-101. PubMed ID: 27351273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation.
    Yan K; Wu D; Peng H; Jin L; Fu Q; Bao X; Liu Z
    Nat Commun; 2012; 3():1280. PubMed ID: 23232410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seamless lateral graphene p-n junctions formed by selective in situ doping for high-performance photodetectors.
    Wang G; Zhang M; Chen D; Guo Q; Feng X; Niu T; Liu X; Li A; Lai J; Sun D; Liao Z; Wang Y; Chu PK; Ding G; Xie X; Di Z; Wang X
    Nat Commun; 2018 Dec; 9(1):5168. PubMed ID: 30518867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene.
    Liu N; Tian H; Schwartz G; Tok JB; Ren TL; Bao Z
    Nano Lett; 2014 Jul; 14(7):3702-8. PubMed ID: 24927382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p-n junctions.
    Wu D; Yan K; Zhou Y; Wang H; Lin L; Peng H; Liu Z
    J Am Chem Soc; 2013 Jul; 135(30):10926-9. PubMed ID: 23848608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties.
    Wei D; Liu Y; Wang Y; Zhang H; Huang L; Yu G
    Nano Lett; 2009 May; 9(5):1752-8. PubMed ID: 19326921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-Free Synthesis of Boron-Doped Graphene Glass by Hot-Filament Chemical Vapor Deposition for Wave Energy Harvesting.
    Zhai Z; Shen H; Chen J; Li X; Li Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2805-2815. PubMed ID: 31867953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties.
    Lazar P; Zbořil R; Pumera M; Otyepka M
    Phys Chem Chem Phys; 2014 Jul; 16(27):14231-5. PubMed ID: 24912566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties.
    Yeom DY; Jeon W; Tu ND; Yeo SY; Lee SS; Sung BJ; Chang H; Lim JA; Kim H
    Sci Rep; 2015 May; 5():9817. PubMed ID: 25940534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic and Electrical Characterizations of Low-Damage Phosphorous-Doped Graphene via Ion Implantation.
    He SM; Huang CC; Liou JW; Woon WY; Su CY
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):47289-47298. PubMed ID: 31746197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorous- and Boron-Doped Graphene-Based Nanomaterials for Energy-Related Applications.
    Ubhi MK; Kaur M; Grewal JK; Sharma VK
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocurrent generation of a single-gate graphene p-n junction fabricated by interfacial modification.
    Wang S; Sekine Y; Suzuki S; Maeda F; Hibino H
    Nanotechnology; 2015 Sep; 26(38):385203. PubMed ID: 26334952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic and Chemical Properties of Donor, Acceptor Centers in Graphene.
    Telychko M; Mutombo P; Merino P; Hapala P; Ondráček M; Bocquet FC; Sforzini J; Stetsovych O; Vondráček M; Jelínek P; Švec M
    ACS Nano; 2015 Sep; 9(9):9180-7. PubMed ID: 26256407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P-N Junction Diode Using Plasma Boron-Doped Black Phosphorus for High-Performance Photovoltaic Devices.
    Kim DK; Hong SB; Jeong K; Lee C; Kim H; Cho MH
    ACS Nano; 2019 Feb; 13(2):1683-1693. PubMed ID: 30753059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epitaxial growth of asymmetrically-doped bilayer graphene for photocurrent generation.
    Zhou Y; Yan K; Wu D; Zhao S; Lin L; Jin L; Liao L; Wang H; Fu Q; Bao X; Peng H; Liu Z
    Small; 2014 Jun; 10(11):2245-50. PubMed ID: 24644002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct synthesis of phosphorus and nitrogen co-doped monolayer graphene with air-stable n-type characteristics.
    Xue Y; Wu B; Liu H; Tan J; Hu W; Liu Y
    Phys Chem Chem Phys; 2014 Oct; 16(38):20392-7. PubMed ID: 25146414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering.
    Zhang J; Zhu Z; Liu W; Yuan X; Qin S
    Nanoscale; 2015 Aug; 7(32):13530-6. PubMed ID: 26201255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile preparation of nitrogen-doped few-layer graphene via supercritical reaction.
    Qian W; Cui X; Hao R; Hou Y; Zhang Z
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2259-64. PubMed ID: 21644571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.