BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 27351369)

  • 1. Thromboxane A2 Regulates CXCL1 and CXCL8 Chemokine Expression in the Nasal Mucosa-Derived Fibroblasts of Chronic Rhinosinusitis Patients.
    Tsai YJ; Hao SP; Chen CL; Wu WB
    PLoS One; 2016; 11(6):e0158438. PubMed ID: 27351369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of long pentraxin 3 in human nasal mucosa fibroblasts, tissues, and secretions of chronic rhinosinusitis without nasal polyps.
    Tsai YJ; Hao CY; Chen CL; Wu PH; Wu WB
    J Mol Med (Berl); 2020 May; 98(5):673-689. PubMed ID: 32239253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of B2 receptor in bradykinin-induced proliferation and proinflammatory effects in human nasal mucosa-derived fibroblasts isolated from chronic rhinosinusitis patients.
    Tsai YJ; Hao SP; Chen CL; Lin BJ; Wu WB
    PLoS One; 2015; 10(5):e0126853. PubMed ID: 25970620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toll-like receptor 4-mediated expression of interleukin-32 via the c-Jun N-terminal kinase/protein kinase B/cyclic adenosine monophosphate response element binding protein pathway in chronic rhinosinusitis with nasal polyps.
    Cho JS; Kim JA; Park JH; Park IH; Han IH; Lee HM
    Int Forum Allergy Rhinol; 2016 Oct; 6(10):1020-1028. PubMed ID: 27173130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptidoglycan induces bradykinin receptor 1 expression through Toll-like receptor 2 and NF-κB signaling pathway in human nasal mucosa-derived fibroblasts of chronic rhinosinusitis patients.
    Tsai YJ; Chi JC; Hao CY; Wu WB
    J Cell Physiol; 2018 Sep; 233(9):7226-7238. PubMed ID: 29574744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thromboxane A2 promotes interleukin-6 biosynthesis mediated by an activation of cyclic AMP-response element-binding protein in 1321N1 human astrocytoma cells.
    Obara Y; Kurose H; Nakahata N
    Mol Pharmacol; 2005 Sep; 68(3):670-9. PubMed ID: 15967875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and localization of thromboxane A2 receptor in human and guinea-pig nasal mucosa using radiolabelled (+)-S-145.
    Arimura A; Miwa M; Hasegawa H; Kishino J; Notoya M; Yasui K; Komori M; Iwata S
    Br J Pharmacol; 1998 Jun; 124(4):795-803. PubMed ID: 9690873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of NAD(P)H oxidases by thromboxane A2 receptor uncouples endothelial nitric oxide synthase.
    Zhang M; Song P; Xu J; Zou MH
    Arterioscler Thromb Vasc Biol; 2011 Jan; 31(1):125-32. PubMed ID: 20947827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thromboxane-insensitive dog platelets have impaired activation of phospholipase C due to receptor-linked G protein dysfunction.
    Johnson GJ; Leis LA; Dunlop PC
    J Clin Invest; 1993 Nov; 92(5):2469-79. PubMed ID: 8227362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and functional characterization of thromboxane A2 receptors in Schwann cells.
    Muja N; Blackman SC; Le Breton GC; DeVries GH
    J Neurochem; 2001 Aug; 78(3):446-56. PubMed ID: 11483647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thromboxane A2 Receptor Inhibition Suppresses Multiple Myeloma Cell Proliferation by Inducing p38/c-Jun N-terminal Kinase (JNK) Mitogen-activated Protein Kinase (MAPK)-mediated G2/M Progression Delay and Cell Apoptosis.
    Liu Q; Tao B; Liu G; Chen G; Zhu Q; Yu Y; Yu Y; Xiong H
    J Biol Chem; 2016 Feb; 291(9):4779-92. PubMed ID: 26724804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homologous desensitization of signalling by the alpha (alpha) isoform of the human thromboxane A2 receptor: a specific role for nitric oxide signalling.
    Kelley-Hickie LP; O'Keeffe MB; Reid HM; Kinsella BT
    Biochim Biophys Acta; 2007 Jun; 1773(6):970-89. PubMed ID: 17466390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thromboxane A2 receptor activates a Rho-associated kinase/LKB1/PTEN pathway to attenuate endothelium insulin signaling.
    Song P; Zhang M; Wang S; Xu J; Choi HC; Zou MH
    J Biol Chem; 2009 Jun; 284(25):17120-17128. PubMed ID: 19403525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1, 6-di-O-caffeoyl-β-D-glucopyranoside, a natural compound from Callicarpa nudiflora Hook impairs P2Y
    Fu J; Zhu X; Wang W; Lu H; Zhang Z; Liu T; Xu H; Fu H; Ma S; Luo Y
    Phytomedicine; 2017 Dec; 36():273-282. PubMed ID: 29157825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of thromboxane A(2) receptors induces orphan nuclear receptor Nurr1 expression and stimulates cell proliferation in human lung cancer cells.
    Li X; Tai HH
    Carcinogenesis; 2009 Sep; 30(9):1606-13. PubMed ID: 19570744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of lipopolysaccharide on glucocorticoid receptor function in control nasal mucosa fibroblasts and in fibroblasts from patients with chronic rhinosinusitis with nasal polyps and asthma.
    Fernández-Bertolín L; Mullol J; Fuentes-Prado M; Roca-Ferrer J; Alobid I; Picado C; Pujols L
    PLoS One; 2015; 10(5):e0125443. PubMed ID: 25943109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 4-Methylnitrosamino-1-3-pyridyl-1-butanone (NNK) promotes lung cancer cell survival by stimulating thromboxane A2 and its receptor.
    Huang RY; Li MY; Hsin MK; Underwood MJ; Ma LT; Mok TS; Warner TD; Chen GG
    Oncogene; 2011 Jan; 30(1):106-16. PubMed ID: 20818420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased expression of matrix metalloproteinases mediates thromboxane A2-induced invasion in lung cancer cells.
    Li X; Tai HH
    Curr Cancer Drug Targets; 2012 Jul; 12(6):703-15. PubMed ID: 22515524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory effects of luteolin‑4'‑O‑β‑D‑glucopyranoside on P2Y12 and thromboxane A2 receptor‑mediated amplification of platelet activation in vitro.
    Xu H; Lu H; Zhu X; Wang W; Zhang Z; Fu H; Ma S; Luo Y; Fu J
    Int J Mol Med; 2018 Jul; 42(1):615-624. PubMed ID: 29693158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PAR-2 activation regulates IL-8 and GRO-alpha synthesis by NF-kappaB, but not RANTES, IL-6, eotaxin or TARC expression in nasal epithelium.
    Rudack C; Steinhoff M; Mooren F; Buddenkotte J; Becker K; von Eiff C; Sachse F
    Clin Exp Allergy; 2007 Jul; 37(7):1009-22. PubMed ID: 17581194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.