These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 27351447)

  • 1. Dopant Diffusion and Activation in Silicon Nanowires Fabricated by ex Situ Doping: A Correlative Study via Atom-Probe Tomography and Scanning Tunneling Spectroscopy.
    Sun Z; Hazut O; Huang BC; Chiu YP; Chang CS; Yerushalmi R; Lauhon LJ; Seidman DN
    Nano Lett; 2016 Jul; 16(7):4490-500. PubMed ID: 27351447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monolayer contact doping of silicon surfaces and nanowires using organophosphorus compounds.
    Hazut O; Agarwala A; Subramani T; Waichman S; Yerushalmi R
    J Vis Exp; 2013 Dec; (82):50770. PubMed ID: 24326774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanowire Kinking Modulates Doping Profiles by Reshaping the Liquid-Solid Growth Interface.
    Sun Z; Seidman DN; Lauhon LJ
    Nano Lett; 2017 Jul; 17(7):4518-4525. PubMed ID: 28658572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contact doping of silicon wafers and nanostructures with phosphine oxide monolayers.
    Hazut O; Agarwala A; Amit I; Subramani T; Zaidiner S; Rosenwaks Y; Yerushalmi R
    ACS Nano; 2012 Nov; 6(11):10311-8. PubMed ID: 23083376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Obtaining uniform dopant distributions in VLS-grown Si nanowires.
    Koren E; Hyun JK; Givan U; Hemesath ER; Lauhon LJ; Rosenwaks Y
    Nano Lett; 2011 Jan; 11(1):183-7. PubMed ID: 21126102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encoding Highly Nonequilibrium Boron Concentrations and Abrupt Morphology in p-Type/n-Type Silicon Nanowire Superlattices.
    Hill DJ; Teitsworth TS; Kim S; Christesen JD; Cahoon JF
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37105-37111. PubMed ID: 28956906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly doped silicon nanowires by monolayer doping.
    Veerbeek J; Ye L; Vijselaar W; Kudernac T; van der Wiel WG; Huskens J
    Nanoscale; 2017 Feb; 9(8):2836-2844. PubMed ID: 28169380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional doping and diffusion in nano scaled devices as studied by atom probe tomography.
    Kambham AK; Kumar A; Florakis A; Vandervorst W
    Nanotechnology; 2013 Jul; 24(27):275705. PubMed ID: 23764804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale parallel arrays of silicon nanowires via block copolymer directed self-assembly.
    Farrell RA; Kinahan NT; Hansel S; Stuen KO; Petkov N; Shaw MT; West LE; Djara V; Dunne RJ; Varona OG; Gleeson PG; Jung SJ; Kim HY; Koleśnik MM; Lutz T; Murray CP; Holmes JD; Nealey PF; Duesberg GS; Krstić V; Morris MA
    Nanoscale; 2012 May; 4(10):3228-36. PubMed ID: 22481430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of an intrinsic source of doping inhomogeneity in vapor-liquid-solid-grown nanowires.
    Connell JG; Yoon K; Perea DE; Schwalbach EJ; Voorhees PW; Lauhon LJ
    Nano Lett; 2013 Jan; 13(1):199-206. PubMed ID: 23237496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Criteria and considerations for preparing atom-probe tomography specimens of nanomaterials utilizing an encapsulation methodology.
    Sun Z; Hazut O; Yerushalmi R; Lauhon LJ; Seidman DN
    Ultramicroscopy; 2018 Jan; 184(Pt A):225-233. PubMed ID: 28985626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative influence of surface states and bulk impurities on the electrical properties of Ge nanowires.
    Zhang S; Hemesath ER; Perea DE; Wijaya E; Lensch-Falk JL; Lauhon LJ
    Nano Lett; 2009 Sep; 9(9):3268-74. PubMed ID: 19658399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Observation of Dopants Distribution and Diffusion in GaAs Planar Nanowires with Atom Probe Tomography.
    Qu J; Choi W; Katal Mohseni P; Li X; Zhang Y; Chen H; Ringer S; Zheng R
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):26244-26250. PubMed ID: 27633044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic level scheme in boron- and phosphorus-doped silicon nanowires.
    Sato K; Castaldini A; Fukata N; Cavallini A
    Nano Lett; 2012 Jun; 12(6):3012-7. PubMed ID: 22545949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemically doped radial junction characteristics in silicon nanowires.
    Ng MF; Tong SW
    Nano Lett; 2012 Dec; 12(12):6133-8. PubMed ID: 23137035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanobeam X-ray Fluorescence Dopant Mapping Reveals Dynamics of in Situ Zn-Doping in Nanowires.
    Troian A; Otnes G; Zeng X; Chayanun L; Dagytė V; Hammarberg S; Salomon D; Timm R; Mikkelsen A; Borgström MT; Wallentin J
    Nano Lett; 2018 Oct; 18(10):6461-6468. PubMed ID: 30185034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale Junction Formation by Gas-Phase Monolayer Doping.
    Taheri P; Fahad HM; Tosun M; Hettick M; Kiriya D; Chen K; Javey A
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20648-20655. PubMed ID: 28548483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative dopant distributions in GaAs nanowires using atom probe tomography.
    Du S; Burgess T; Gault B; Gao Q; Bao P; Li L; Cui X; Kong Yeoh W; Liu H; Yao L; Ceguerra AV; Hoe Tan H; Jagadish C; Ringer SP; Zheng R
    Ultramicroscopy; 2013 Sep; 132():186-92. PubMed ID: 23489910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of dopant-pair defects and doping efficiency in B- and P-doped silicon nanowires.
    Moon CY; Lee WJ; Chang KJ
    Nano Lett; 2008 Oct; 8(10):3086-91. PubMed ID: 18729413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ex situ vapor phase boron doping of silicon nanowires using BBr3.
    Doerk GS; Lestari G; Liu F; Carraro C; Maboudian R
    Nanoscale; 2010 Jul; 2(7):1165-70. PubMed ID: 20648344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.