These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 27351454)

  • 1. The Effects of Environmental Exposure on the Optical, Physical, and Chemical Properties of Manufactured Fibers of Natural Origin.
    Brinsko KM; Sparenga S; King M
    J Forensic Sci; 2016 Sep; 61(5):1215-27. PubMed ID: 27351454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical characterization of some modern "eco-friendly" fibers.
    Brinsko KM
    J Forensic Sci; 2010 Jul; 55(4):915-23. PubMed ID: 20345771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Identification of Rayon/Viscose as a Major Fraction of Microplastics in the Marine Environment: Discrimination between Natural and Manmade Cellulosic Fibers Using Fourier Transform Infrared Spectroscopy.
    Comnea-Stancu IR; Wieland K; Ramer G; Schwaighofer A; Lendl B
    Appl Spectrosc; 2017 May; 71(5):939-950. PubMed ID: 27650982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Polylactic Acid Fibers in Cellulose Nonwoven Mulch Blends on Biodegradability and Performance-An Open Field Study.
    Kopitar D; Marasovic P; Vrsaljko D
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38257019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of ionizing gamma radiation on natural and synthetic fibers and its implications for the forensic examination of fiber evidence.
    Colella M; Parkinson A; Evans T; Robertson J; Roux C
    J Forensic Sci; 2011 May; 56(3):591-605. PubMed ID: 21306372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution.
    Ruan D; Zhang L; Zhou J; Jin H; Chen H
    Macromol Biosci; 2004 Dec; 4(12):1105-12. PubMed ID: 15586387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study of nondestructive and fast identification of fabric fibers using near infrared spectroscopy].
    Yuan HF; Chang RX; Tian LL; Song CF; Yuan XQ; Li XY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 May; 30(5):1229-33. PubMed ID: 20672607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic modification of regenerated cellulosic fabrics to improve bacteria sorption properties.
    Akbari M; Dadadashian F; Kordestani SS; Xue M; Jackson CJ
    J Biomed Mater Res A; 2013 Jun; 101(6):1734-42. PubMed ID: 23184868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of mechanical strength properties of hemp fibers using near-infrared fourier transform Raman microspectroscopy.
    Peetla P; Schenzel KC; Diepenbrock W
    Appl Spectrosc; 2006 Jun; 60(6):682-91. PubMed ID: 16808870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The analysis of colored acrylic, cotton, and wool textile fibers using micro-Raman spectroscopy. Part 2: comparison with the traditional methods of fiber examination.
    Buzzini P; Massonnet G
    J Forensic Sci; 2015 May; 60(3):712-20. PubMed ID: 25731068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscopical recognition and characterization of solution dyed fibers.
    Brinsko-Beckert K; Palenik S; Abraham OR; Groves E; Palenik CS
    J Forensic Sci; 2024 Jan; 69(1):60-80. PubMed ID: 37990620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological natural retting for determining the hierarchical structuration of banana fibers.
    Gañán P; Zuluaga R; Velez JM; Mondragon I
    Macromol Biosci; 2004 Oct; 4(10):978-83. PubMed ID: 15497200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-induced surface graft polymerizations initiated by an anthraquinone dye on cotton fibers.
    Zhuo J; Sun G
    Carbohydr Polym; 2014 Nov; 112():158-64. PubMed ID: 25129730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recycling of cellulosic fibers by enzymatic process.
    Shojaei KM; Dadashian F; Montazer M
    Appl Biochem Biotechnol; 2012 Feb; 166(3):744-52. PubMed ID: 22161212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oil sorption behavior of various sorbents studied by sorption capacity measurement and environmental scanning electron microscopy.
    Choi HM; Moreau JP
    Microsc Res Tech; 1993 Aug; 25(5-6):447-55. PubMed ID: 8400439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chitosan/starch fibers and their properties for drug controlled release.
    Wang Q; Zhang N; Hu X; Yang J; Du Y
    Eur J Pharm Biopharm; 2007 Jun; 66(3):398-404. PubMed ID: 17196808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ultraviolet light (315 nm), temperature and relative humidity on the degradation of polylactic acid plastic films.
    Copinet A; Bertrand C; Govindin S; Coma V; Couturier Y
    Chemosphere; 2004 May; 55(5):763-73. PubMed ID: 15013682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of bioluminescent Escherichia coli cells using natural and artificial fibers treated with polyethyleneimine.
    Chu YF; Hsu CH; Soma PK; Lo YM
    Bioresour Technol; 2009 Jul; 100(13):3167-74. PubMed ID: 19285859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nontoxic and chemically stable hollow optical fiber probe for fourier transform infrared spectroscopy.
    Kino S; Matsuura Y
    Appl Spectrosc; 2007 Dec; 61(12):1334-7. PubMed ID: 18198025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerated weathering-induced degradation of poly(lactic acid) fiber studied by near-infrared (NIR) hyperspectral imaging.
    Shinzawa H; Nishida M; Tanaka T; Kanematsu W
    Appl Spectrosc; 2012 Apr; 66(4):470-4. PubMed ID: 22449331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.