These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 27352100)

  • 41. Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors.
    Wan L; Wang J; Xie L; Sun Y; Li K
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15583-96. PubMed ID: 25137068
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced capacitive deionization of graphene/mesoporous carbon composites.
    Zhang D; Wen X; Shi L; Yan T; Zhang J
    Nanoscale; 2012 Sep; 4(17):5440-6. PubMed ID: 22836788
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A top-down approach for fabricating free-standing bio-carbon supercapacitor electrodes with a hierarchical structure.
    Li Y; Zhang Q; Zhang J; Jin L; Zhao X; Xu T
    Sci Rep; 2015 Sep; 5():14155. PubMed ID: 26394834
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization.
    Huang SY; Fan CS; Hou CH
    J Hazard Mater; 2014 Aug; 278():8-15. PubMed ID: 24937658
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Facile synthesis of novel graphene sponge for high performance capacitive deionization.
    Xu X; Pan L; Liu Y; Lu T; Sun Z; Chua DH
    Sci Rep; 2015 Feb; 5():8458. PubMed ID: 25675835
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metal-organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization.
    Liu Y; Xu X; Wang M; Lu T; Sun Z; Pan L
    Chem Commun (Camb); 2015 Aug; 51(60):12020-3. PubMed ID: 26121467
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enabling a Large Accessible Surface Area of a Pore-Designed Hydrophilic Carbon Nanofiber Fabric for Ultrahigh Capacitive Deionization.
    Gong X; Zhang S; Luo W; Guo N; Wang L; Jia D; Zhao Z; Feng S; Jia L
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49586-49595. PubMed ID: 33095001
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer.
    Kim YJ; Choi JH
    Water Res; 2010 Feb; 44(3):990-6. PubMed ID: 19896691
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three-dimensional carbon architectures for electrochemical capacitors.
    Song Y; Liu T; Qian F; Zhu C; Yao B; Duoss E; Spadaccini C; Worsley M; Li Y
    J Colloid Interface Sci; 2018 Jan; 509():529-545. PubMed ID: 28756854
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance.
    Xu X; Sun Z; Chua DH; Pan L
    Sci Rep; 2015 Jun; 5():11225. PubMed ID: 26063676
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Supercapacitive behavior depending on the mesopore size of three-dimensional micro-, meso- and macroporous silicon carbide for supercapacitors.
    Kim M; Oh I; Kim J
    Phys Chem Chem Phys; 2015 Feb; 17(6):4424-33. PubMed ID: 25579871
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Carbon Nanoarchitectonics with Bi Nanoparticle Encapsulation for Improved Electrochemical Deionization Performance.
    Wang H; Wei D; He Y; Deng H; Wu B; Yan L; Gang H; Cao Y; Jin L; Zhang L
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13177-13185. PubMed ID: 35262320
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cellulose Derived Graphenic Fibers for Capacitive Desalination of Brackish Water.
    Pugazhenthiran N; Sen Gupta S; Prabhath A; Manikandan M; Swathy JR; Raman VK; Pradeep T
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20156-63. PubMed ID: 26305260
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oxygen- and Nitrogen-Enriched 3D Porous Carbon for Supercapacitors of High Volumetric Capacity.
    Li J; Liu K; Gao X; Yao B; Huo K; Cheng Y; Cheng X; Chen D; Wang B; Sun W; Ding D; Liu M; Huang L
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24622-8. PubMed ID: 26477268
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hierarchical nanostructured carbons with meso-macroporosity: design, characterization, and applications.
    Fang B; Kim JH; Kim MS; Yu JS
    Acc Chem Res; 2013 Jul; 46(7):1397-406. PubMed ID: 23270494
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct large-scale synthesis of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries.
    bai Z; Ju Z; Guo C; Qian Y; Tang B; Xiong S
    Nanoscale; 2014 Mar; 6(6):3268-73. PubMed ID: 24509514
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Revisiting the Effect of Pyrolysis Temperature and Type of Activation on the Performance of Carbon Electrodes in an Electrochemical Capacitor.
    Chavhan MP; Slovak V; Zelenkova G; Dominko D
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407762
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Catechol-modified activated carbon prepared by the diazonium chemistry for application as active electrode material in electrochemical capacitor.
    Pognon G; Cougnon C; Mayilukila D; Bélanger D
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3788-96. PubMed ID: 22803766
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Using mesoporous carbon electrodes for brackish water desalination.
    Zou L; Li L; Song H; Morris G
    Water Res; 2008 Apr; 42(8-9):2340-8. PubMed ID: 18222527
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A template-free method for preparation of cobalt nanoparticles embedded in N-doped carbon nanofibers with a hierarchical pore structure for oxygen reduction.
    Wang S; Cui Z; Cao M
    Chemistry; 2015 Jan; 21(5):2165-72. PubMed ID: 25449793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.