BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27352241)

  • 1. Flexible Asymmetric Encapsulation for Dehydration-Responsive Hybrid Microfibers.
    Chaurasia AS; Sajjadi S
    Small; 2016 Aug; 12(30):4146-55. PubMed ID: 27352241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation and verification of macroscopic isotropy of hollow alginate-based microfibers.
    Djomehri S; Zeid H; Yavari A; Mobed-Miremadi M; Youssefi K; Liao-Chan S
    Artif Cells Nanomed Biotechnol; 2015; 43(6):390-7. PubMed ID: 24684489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alginate/polyethylene glycol blend fibers and their properties for drug controlled release.
    Wang Q; Zhang N; Hu X; Yang J; Du Y
    J Biomed Mater Res A; 2007 Jul; 82(1):122-8. PubMed ID: 17269140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Fabrication of Bio-Inspired Microfibers with Controllable Magnetic Spindle-Knots for 3D Assembly and Water Collection.
    He XH; Wang W; Liu YM; Jiang MY; Wu F; Deng K; Liu Z; Ju XJ; Xie R; Chu LY
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17471-81. PubMed ID: 26192108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible fabrication of biomimetic bamboo-like hybrid microfibers.
    Yu Y; Wen H; Ma J; Lykkemark S; Xu H; Qin J
    Adv Mater; 2014 Apr; 26(16):2494-9. PubMed ID: 24453009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of freestanding alginate microfibers and microstructures for tissue engineering applications.
    Szymanski JM; Feinberg AW
    Biofabrication; 2014 Jun; 6(2):024104. PubMed ID: 24695323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apatite-forming ability of alginate fibers treated with calcium hydroxide solution.
    Kokubo T; Hanakawa M; Kawashita M; Minoda M; Beppu T; Miyamoto T; Nakamura T
    J Mater Sci Mater Med; 2004 Sep; 15(9):1007-12. PubMed ID: 15448408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controllable generation and encapsulation of alginate fibers using droplet-based microfluidics.
    Martino C; Statzer C; Vigolo D; deMello AJ
    Lab Chip; 2016 Jan; 16(1):59-64. PubMed ID: 26556398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composite ECM-alginate microfibers produced by microfluidics as scaffolds with biomineralization potential.
    Angelozzi M; Miotto M; Penolazzi L; Mazzitelli S; Keane T; Badylak SF; Piva R; Nastruzzi C
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():141-53. PubMed ID: 26249575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size control of calcium alginate beads containing living cells using micro-nozzle array.
    Sugiura S; Oda T; Izumida Y; Aoyagi Y; Satake M; Ochiai A; Ohkohchi N; Nakajima M
    Biomaterials; 2005 Jun; 26(16):3327-31. PubMed ID: 15603828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of the nano-tensile mechanical properties of co-blended amphiphilic alginate fibers as oradurable biomaterials for specialized biomedical application.
    Johnston D; Kumar P; Choonara YE; du Toit LC; Pillay V
    J Mech Behav Biomed Mater; 2013 Jul; 23():80-102. PubMed ID: 23665485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatible sodium alginate fibers by aqueous processing and physical crosslinking.
    Shen W; Hsieh YL
    Carbohydr Polym; 2014 Feb; 102():893-900. PubMed ID: 24507361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of mammalian cell-enclosing calcium-alginate hydrogel fibers in a co-flowing stream.
    Takei T; Sakai S; Ijima H; Kawakami K
    Biotechnol J; 2006 Sep; 1(9):1014-7. PubMed ID: 16941441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alginate and chitosan polyion complex hybrid fibers for scaffolds in ligament and tendon tissue engineering.
    Majima T; Funakosi T; Iwasaki N; Yamane ST; Harada K; Nonaka S; Minami A; Nishimura S
    J Orthop Sci; 2005 May; 10(3):302-7. PubMed ID: 15928894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled Fabrication of Bioactive Microfibers for Creating Tissue Constructs Using Microfluidic Techniques.
    Cheng Y; Yu Y; Fu F; Wang J; Shang L; Gu Z; Zhao Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1080-6. PubMed ID: 26741731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic generation of hollow Ca-alginate microfibers.
    Meng ZJ; Wang W; Xie R; Ju XJ; Liu Z; Chu LY
    Lab Chip; 2016 Jul; 16(14):2673-81. PubMed ID: 27302737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of cell composite alginate microfibers by microfluidics with the application potential of small diameter vascular grafts.
    Liu M; Zhou Z; Chai Y; Zhang S; Wu X; Huang S; Su J; Jiang J
    Biofabrication; 2017 Jun; 9(2):025030. PubMed ID: 28485303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oil core microcapsules by inverse gelation technique.
    Martins E; Renard D; Davy J; Marquis M; Poncelet D
    J Microencapsul; 2015; 32(1):86-95. PubMed ID: 25413437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-triggered cross-linking of alginates with caged Ca2+.
    Cui J; Wang M; Zheng Y; Rodríguez Muñiz GM; del Campo A
    Biomacromolecules; 2013 May; 14(5):1251-6. PubMed ID: 23517470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of jet stretch and particle load on cellulose nanocrystal-alginate nanocomposite fibers.
    Ureña-Benavides EE; Brown PJ; Kitchens CL
    Langmuir; 2010 Sep; 26(17):14263-70. PubMed ID: 20712357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.