These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 27352627)
1. Transcriptome analysis of maize resistance to Fusarium graminearum. Liu Y; Guo Y; Ma C; Zhang D; Wang C; Yang Q BMC Genomics; 2016 Jun; 17():477. PubMed ID: 27352627 [TBL] [Abstract][Full Text] [Related]
2. A major QTL for resistance to Gibberella stalk rot in maize. Yang Q; Yin G; Guo Y; Zhang D; Chen S; Xu M Theor Appl Genet; 2010 Aug; 121(4):673-87. PubMed ID: 20401458 [TBL] [Abstract][Full Text] [Related]
3. Fine-mapping of qRfg2, a QTL for resistance to Gibberella stalk rot in maize. Zhang D; Liu Y; Guo Y; Yang Q; Ye J; Chen S; Xu M Theor Appl Genet; 2012 Feb; 124(3):585-96. PubMed ID: 22048640 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes. Kebede AZ; Johnston A; Schneiderman D; Bosnich W; Harris LJ BMC Genomics; 2018 Feb; 19(1):131. PubMed ID: 29426290 [TBL] [Abstract][Full Text] [Related]
5. Integrated analysis of transcriptomics and defense-related phytohormones to discover hub genes conferring maize Gibberella ear rot caused by Fusarium Graminearum. Yuan G; Shi J; Zeng C; Shi H; Yang Y; Zhang C; Ma T; Wu M; Jia Z; Du J; Zou C; Ma L; Pan G; Shen Y BMC Genomics; 2024 Jul; 25(1):733. PubMed ID: 39080512 [TBL] [Abstract][Full Text] [Related]
6. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. Wang C; Yang Q; Wang W; Li Y; Guo Y; Zhang D; Ma X; Song W; Zhao J; Xu M New Phytol; 2017 Sep; 215(4):1503-1515. PubMed ID: 28722229 [TBL] [Abstract][Full Text] [Related]
7. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. Lanubile A; Ferrarini A; Maschietto V; Delledonne M; Marocco A; Bellin D BMC Genomics; 2014 Aug; 15(1):710. PubMed ID: 25155950 [TBL] [Abstract][Full Text] [Related]
8. qRfg3, a novel quantitative resistance locus against Gibberella stalk rot in maize. Ma C; Ma X; Yao L; Liu Y; Du F; Yang X; Xu M Theor Appl Genet; 2017 Aug; 130(8):1723-1734. PubMed ID: 28555262 [TBL] [Abstract][Full Text] [Related]
9. Cytological and molecular characterization of quantitative trait locus qRfg1, which confers resistance to gibberella stalk rot in maize. Ye J; Guo Y; Zhang D; Zhang N; Wang C; Xu M Mol Plant Microbe Interact; 2013 Dec; 26(12):1417-28. PubMed ID: 23902264 [TBL] [Abstract][Full Text] [Related]
10. The Auxin-Regulated Protein ZmAuxRP1 Coordinates the Balance between Root Growth and Stalk Rot Disease Resistance in Maize. Ye J; Zhong T; Zhang D; Ma C; Wang L; Yao L; Zhang Q; Zhu M; Xu M Mol Plant; 2019 Mar; 12(3):360-373. PubMed ID: 30853061 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of Resistance Resources and Analysis of Resistance Mechanisms of Maize to Stalk Rot Caused by Zhang X; Zheng S; Yu M; Xu C; Li Y; Sun L; Hu G; Yang J; Qiu X Plant Dis; 2024 Feb; 108(2):348-358. PubMed ID: 37443398 [TBL] [Abstract][Full Text] [Related]
12. Transcriptomic and Metabolomic Analyses Reveal the Role of Phenylalanine Metabolism in the Maize Response to Stalk Rot Caused by Sun J; Wang Y; Zhang X; Cheng Z; Song Y; Li H; Wang N; Liu S; Cao Z; Li H; Zheng W; Duan C; Cao Y Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338769 [TBL] [Abstract][Full Text] [Related]
13. Susceptibility of Maize to Stalk Rot Caused by Fusarium graminearum Deoxynivalenol and Zearalenone Mutants. Quesada-Ocampo LM; Al-Haddad J; Scruggs AC; Buell CR; Trail F Phytopathology; 2016 Aug; 106(8):920-7. PubMed ID: 27050573 [TBL] [Abstract][Full Text] [Related]
14. A guanylyl cyclase-like gene is associated with Gibberella ear rot resistance in maize (Zea mays L.). Yuan J; Liakat Ali M; Taylor J; Liu J; Sun G; Liu W; Masilimany P; Gulati-Sakhuja A; Pauls KP Theor Appl Genet; 2008 Feb; 116(4):465-79. PubMed ID: 18074115 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide association study and molecular marker development for susceptibility to Gibberella ear rot in maize. Zhou G; Ma L; Zhao C; Xie F; Xu Y; Wang Q; Hao D; Gao X Theor Appl Genet; 2024 Sep; 137(10):222. PubMed ID: 39276212 [TBL] [Abstract][Full Text] [Related]
16. Mapping quantitative trait loci (QTLs) for resistance to Gibberella zeae infection in maize. Pè ME; Gianfranceschi L; Taramino G; Tarchini R; Angelini P; Dani M; Binelli G Mol Gen Genet; 1993 Oct; 241(1-2):11-6. PubMed ID: 7901750 [TBL] [Abstract][Full Text] [Related]
17. Beneficial Rhizobacterium Triggers Induced Systemic Resistance of Maize to Gibberella Stalk Rot via Calcium Signaling. Cao Y; Wang Y; Gui C; Nguvo KJ; Ma L; Wang Q; Shen Q; Zhang R; Gao X Mol Plant Microbe Interact; 2023 Aug; 36(8):516-528. PubMed ID: 37188493 [TBL] [Abstract][Full Text] [Related]
18. Cellular Tracking and Gene Profiling of Fusarium graminearum during Maize Stalk Rot Disease Development Elucidates Its Strategies in Confronting Phosphorus Limitation in the Host Apoplast. Zhang Y; He J; Jia LJ; Yuan TL; Zhang D; Guo Y; Wang Y; Tang WH PLoS Pathog; 2016 Mar; 12(3):e1005485. PubMed ID: 26974960 [TBL] [Abstract][Full Text] [Related]
19. Different responses of two genes associated with disease resistance loci in maize (Zea mays L.) to 3-allyloxy-1,2-benzothiazole 1,1-dioxide. Yuan J; Tedman J; Ali L; Liu J; Taylor J; Lightfoot D; Iwata M; Pauls KP Curr Issues Mol Biol; 2009; 11 Suppl 1():i85-94. PubMed ID: 19193968 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide identification of the maize 2OGD superfamily genes and their response to Fusarium verticillioides and Fusarium graminearum. Ge C; Tang C; Zhu YX; Wang GF Gene; 2021 Jan; 764():145078. PubMed ID: 32858175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]