BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 27352843)

  • 1. Toxicity responses of Cu and Cd: the involvement of miRNAs and the transcription factor SPL7.
    Gielen H; Remans T; Vangronsveld J; Cuypers A
    BMC Plant Biol; 2016 Jun; 16(1):145. PubMed ID: 27352843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana.
    Gayomba SR; Jung HI; Yan J; Danku J; Rutzke MA; Bernal M; Krämer U; Kochian LV; Salt DE; Vatamaniuk OK
    Metallomics; 2013 Sep; 5(9):1262-75. PubMed ID: 23835944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis.
    Bernal M; Casero D; Singh V; Wilson GT; Grande A; Yang H; Dodani SC; Pellegrini M; Huijser P; Connolly EL; Merchant SS; Krämer U
    Plant Cell; 2012 Feb; 24(2):738-61. PubMed ID: 22374396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of sucrose-responsive microRNAs reveals sucrose-regulated copper accumulations in an SPL7-dependent and independent manner in Arabidopsis thaliana.
    Ren L; Tang G
    Plant Sci; 2012 May; 187():59-68. PubMed ID: 22404833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SQUAMOSA Promoter Binding Protein-Like7 Is a Central Regulator for Copper Homeostasis in Arabidopsis.
    Yamasaki H; Hayashi M; Fukazawa M; Kobayashi Y; Shikanai T
    Plant Cell; 2009 Jan; 21(1):347-61. PubMed ID: 19122104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SQUAMOSA promoter binding protein-like7 regulated microRNA408 is required for vegetative development in Arabidopsis.
    Zhang H; Li L
    Plant J; 2013 Apr; 74(1):98-109. PubMed ID: 23289771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Copper-microRNA Pathway Is Integrated with Developmental and Environmental Stress Responses in
    Perea-García A; Andrés-Bordería A; Huijser P; Peñarrubia L
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterisation of Arabidopsis SPL7 conserved protein domains suggests novel regulatory mechanisms in the Cu deficiency response.
    Garcia-Molina A; Xing S; Huijser P
    BMC Plant Biol; 2014 Aug; 14():231. PubMed ID: 25207797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA408 is critical for the HY5-SPL7 gene network that mediates the coordinated response to light and copper.
    Zhang H; Zhao X; Li J; Cai H; Deng XW; Li L
    Plant Cell; 2014 Dec; 26(12):4933-53. PubMed ID: 25516599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A conserved KIN17 curved DNA-binding domain protein assembles with SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE7 to adapt Arabidopsis growth and development to limiting copper availability.
    Garcia-Molina A; Xing S; Huijser P
    Plant Physiol; 2014 Feb; 164(2):828-40. PubMed ID: 24335506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of copper deficiency responses by diurnal and circadian rhythms in Arabidopsis thaliana.
    Perea-García A; Andrés-Bordería A; Mayo de Andrés S; Sanz A; Davis AM; Davis SJ; Huijser P; Peñarrubia L
    J Exp Bot; 2016 Jan; 67(1):391-403. PubMed ID: 26516126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress.
    Collin VC; Eymery F; Genty B; Rey P; Havaux M
    Plant Cell Environ; 2008 Feb; 31(2):244-57. PubMed ID: 17996014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Daily rhythmicity of high affinity copper transport.
    Perea-García A; Sanz A; Moreno J; Andrés-Bordería A; de Andrés SM; Davis AM; Huijser P; Davis SJ; Peñarrubia L
    Plant Signal Behav; 2016; 11(3):e1140291. PubMed ID: 26890490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana.
    Waters BM; McInturf SA; Stein RJ
    J Exp Bot; 2012 Oct; 63(16):5903-18. PubMed ID: 22962679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of global responses to mild deficiency and excess copper levels in Arabidopsis seedlings.
    Andrés-Colás N; Perea-García A; Mayo de Andrés S; Garcia-Molina A; Dorcey E; Rodríguez-Navarro S; Pérez-Amador MA; Puig S; Peñarrubia L
    Metallomics; 2013 Sep; 5(9):1234-46. PubMed ID: 23455955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper delivery by the copper chaperone for chloroplast and cytosolic copper/zinc-superoxide dismutases: regulation and unexpected phenotypes in an Arabidopsis mutant.
    Cohu CM; Abdel-Ghany SE; Gogolin Reynolds KA; Onofrio AM; Bodecker JR; Kimbrel JA; Niyogi KK; Pilon M
    Mol Plant; 2009 Nov; 2(6):1336-50. PubMed ID: 19969519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc-Finger Transcription Factor ZAT6 Positively Regulates Cadmium Tolerance through the Glutathione-Dependent Pathway in Arabidopsis.
    Chen J; Yang L; Yan X; Liu Y; Wang R; Fan T; Ren Y; Tang X; Xiao F; Liu Y; Cao S
    Plant Physiol; 2016 May; 171(1):707-19. PubMed ID: 26983992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miR408 is involved in abiotic stress responses in Arabidopsis.
    Ma C; Burd S; Lers A
    Plant J; 2015 Oct; 84(1):169-87. PubMed ID: 26312768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Cu delivery to chloroplast proteins.
    Tapken W; Ravet K; Shahbaz M; Pilon M
    Plant Signal Behav; 2015; 10(7):e1046666. PubMed ID: 26251885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defective copper transport in the copt5 mutant affects cadmium tolerance.
    Carrió-Seguí A; Garcia-Molina A; Sanz A; Peñarrubia L
    Plant Cell Physiol; 2015 Mar; 56(3):442-54. PubMed ID: 25432970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.