These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. An integrated and comparative approach towards identification, characterization and functional annotation of candidate genes for drought tolerance in sorghum (Sorghum bicolor (L.) Moench). Woldesemayat AA; Van Heusden P; Ndimba BK; Christoffels A BMC Genet; 2017 Dec; 18(1):119. PubMed ID: 29273003 [TBL] [Abstract][Full Text] [Related]
5. Molecular Breeding of Sorghum bicolor, A Novel Energy Crop. Ordonio R; Ito Y; Morinaka Y; Sazuka T; Matsuoka M Int Rev Cell Mol Biol; 2016; 321():221-57. PubMed ID: 26811289 [TBL] [Abstract][Full Text] [Related]
6. Positively selected disease response orthologous gene sets in the cereals identified using Sorghum bicolor L. Moench expression profiles and comparative genomics. Zamora A; Sun Q; Hamblin MT; Aquadro CF; Kresovich S Mol Biol Evol; 2009 Sep; 26(9):2015-30. PubMed ID: 19506000 [TBL] [Abstract][Full Text] [Related]
7. In silico analysis of putative miRNAs and their target genes in sorghum (Sorghum bicolor). Ram G; Sharma AD Int J Bioinform Res Appl; 2013; 9(4):349-64. PubMed ID: 23797994 [TBL] [Abstract][Full Text] [Related]
8. The Plant Orthology Browser: An Orthology and Gene-Order Visualizer for Plant Comparative Genomics. Tulpan D; Leger S Plant Genome; 2017 Mar; 10(1):. PubMed ID: 28464063 [TBL] [Abstract][Full Text] [Related]
9. GraP: platform for functional genomics analysis of Gossypium raimondii. Zhang L; Guo J; You Q; Yi X; Ling Y; Xu W; Hua J; Su Z Database (Oxford); 2015; 2015():bav047. PubMed ID: 25982315 [TBL] [Abstract][Full Text] [Related]
10. Harnessing the Genetic Basis of Sorghum Biomass-Related Traits to Facilitate Bioenergy Applications. Yang L; Zhou Q; Sheng X; Chen X; Hua Y; Lin S; Luo Q; Yu B; Shao T; Wu Y; Chang J; Li Y; Tu M Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833996 [TBL] [Abstract][Full Text] [Related]
11. In silico targeted genome mining and comparative modelling reveals a putative protein similar to an Arabidopsis drought tolerance DNA binding transcription factor in Chromosome 6 of Sorghum bicolor genome. Shanker AK; Maddaala A; Kumar MA; Yadav SK; Maheswari M; Venkateswarlu B Interdiscip Sci; 2012 Jun; 4(2):133-41. PubMed ID: 22843236 [TBL] [Abstract][Full Text] [Related]
12. Small auxin upregulated RNA (SAUR) gene family in maize: identification, evolution, and its phylogenetic comparison with Arabidopsis, rice, and sorghum. Chen Y; Hao X; Cao J J Integr Plant Biol; 2014 Feb; 56(2):133-50. PubMed ID: 24472286 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar. Zhang X; Zong J; Liu J; Yin J; Zhang D J Integr Plant Biol; 2010 Nov; 52(11):1016-26. PubMed ID: 20977659 [TBL] [Abstract][Full Text] [Related]
14. Overexpression of SbMyb60 in Sorghum bicolor impacts both primary and secondary metabolism. Scully ED; Gries T; Palmer NA; Sarath G; Funnell-Harris DL; Baird L; Twigg P; Seravalli J; Clemente TE; Sattler SE New Phytol; 2018 Jan; 217(1):82-104. PubMed ID: 28944535 [TBL] [Abstract][Full Text] [Related]
15. Identification of differentially expressed genes in sorghum (Sorghum bicolor) brown midrib mutants. Yan L; Liu S; Zhao S; Kang Y; Wang D; Gu T; Xin Z; Xia G; Huang Y Physiol Plant; 2012 Dec; 146(4):375-87. PubMed ID: 22578303 [TBL] [Abstract][Full Text] [Related]
16. Energy sorghum--a genetic model for the design of C4 grass bioenergy crops. Mullet J; Morishige D; McCormick R; Truong S; Hilley J; McKinley B; Anderson R; Olson SN; Rooney W J Exp Bot; 2014 Jul; 65(13):3479-89. PubMed ID: 24958898 [TBL] [Abstract][Full Text] [Related]
17. Pathways and Network Based Analysis of Candidate Genes to Reveal Cross-Talk and Specificity in the Sorghum ( Woldesemayat AA; Ntwasa M Front Genet; 2018; 9():557. PubMed ID: 30515190 [TBL] [Abstract][Full Text] [Related]
18. Mapping and candidate genes associated with saccharification yield in sorghum. Wang YH; Acharya A; Burrell AM; Klein RR; Klein PE; Hasenstein KH Genome; 2013 Nov; 56(11):659-65. PubMed ID: 24299105 [TBL] [Abstract][Full Text] [Related]
19. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway. Takos AM; Knudsen C; Lai D; Kannangara R; Mikkelsen L; Motawia MS; Olsen CE; Sato S; Tabata S; Jørgensen K; Møller BL; Rook F Plant J; 2011 Oct; 68(2):273-86. PubMed ID: 21707799 [TBL] [Abstract][Full Text] [Related]
20. Gramene 2021: harnessing the power of comparative genomics and pathways for plant research. Tello-Ruiz MK; Naithani S; Gupta P; Olson A; Wei S; Preece J; Jiao Y; Wang B; Chougule K; Garg P; Elser J; Kumari S; Kumar V; Contreras-Moreira B; Naamati G; George N; Cook J; Bolser D; D'Eustachio P; Stein LD; Gupta A; Xu W; Regala J; Papatheodorou I; Kersey PJ; Flicek P; Taylor C; Jaiswal P; Ware D Nucleic Acids Res; 2021 Jan; 49(D1):D1452-D1463. PubMed ID: 33170273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]