These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27352933)

  • 1. Modelling how incorporation of divalent cations affects calcite wettability-implications for biomineralisation and oil recovery.
    Andersson MP; Dideriksen K; Sakuma H; Stipp SL
    Sci Rep; 2016 Jun; 6():28854. PubMed ID: 27352933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strontium, nickel, cadmium, and lead substitution into calcite, studied by density functional theory.
    Andersson MP; Sakuma H; Stipp SL
    Langmuir; 2014 Jun; 30(21):6129-33. PubMed ID: 24823264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wettability of Calcite Surfaces: Impacts of Brine Ionic Composition and Oil Phase Polarity at Elevated Temperature and Pressure Conditions.
    Xie Y; Khishvand M; Piri M
    Langmuir; 2020 Jun; 36(22):6079-6088. PubMed ID: 32388994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic Study of Wettability Changes on Calcite by Molecules Containing a Polar Hydroxyl Functional Group and Nonpolar Benzene Rings.
    Kim S; Marcano MC; Becker U
    Langmuir; 2019 Feb; 35(7):2527-2537. PubMed ID: 30681863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion adsorption-induced wetting transition in oil-water-mineral systems.
    Mugele F; Bera B; Cavalli A; Siretanu I; Maestro A; Duits M; Cohen-Stuart M; van den Ende D; Stocker I; Collins I
    Sci Rep; 2015 May; 5():10519. PubMed ID: 26013156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic Effect of Nanofluids and Surfactants on Heavy Oil Recovery and Oil-Wet Calcite Wettability.
    Hou J; Sun L
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of ethanol and water on calcite: dependence on surface geometry and effect on surface behavior.
    Keller KS; Olsson MH; Yang M; Stipp SL
    Langmuir; 2015 Apr; 31(13):3847-53. PubMed ID: 25790337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of surface chemistry of silica nanoparticles on contact angle of oil on calcite surfaces in concentrated brine with divalent ions.
    Alzobaidi S; Wu P; Da C; Zhang X; Hackbarth J; Angeles T; Rabat-Torki NJ; MacAuliffe S; Panja S; Johnston KP
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):656-668. PubMed ID: 32814189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wettability alteration of calcite oil wells: Influence of smart water ions.
    Prabhakar S; Melnik R
    Sci Rep; 2017 Dec; 7(1):17365. PubMed ID: 29234078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion-specific interactions at calcite-brine interfaces: a nano-scale study of the surface charge development and preferential binding of polar hydrocarbons.
    Badizad MH; Koleini MM; Greenwell HC; Ayatollahi S; Ghazanfari MH; Mohammadi M
    Phys Chem Chem Phys; 2020 Dec; 22(48):27999-28011. PubMed ID: 33300538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ characterization of mixed-wettability in a reservoir rock at subsurface conditions.
    Alhammadi AM; AlRatrout A; Singh K; Bijeljic B; Blunt MJ
    Sci Rep; 2017 Sep; 7(1):10753. PubMed ID: 28883407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Dynamics Simulations of Oil-Water Wetting Models of Organic Matter and Minerals in Shale at the Nanometer Scale.
    Dong Z; Xue H; Li B; Tian S; Lu S; Lu S
    J Nanosci Nanotechnol; 2021 Jan; 21(1):85-97. PubMed ID: 33213615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wettability reversal on oil-wet calcite surfaces: Experimental and computational investigations of the effect of the hydrophobic chain length of cationic surfactants.
    Tetteh J; Bai S; Kubelka J; Piri M
    J Colloid Interface Sci; 2022 Aug; 619():168-178. PubMed ID: 35381485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of the Calcite {10.4} Surface with Organic Compounds: Structure and Behaviour at Mineral - Organic Interfaces.
    Hakim SS; Olsson MHM; Sørensen HO; Bovet N; Bohr J; Feidenhans'l R; Stipp SLS
    Sci Rep; 2017 Aug; 7(1):7592. PubMed ID: 28790315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Low-Concentration of 1-Pentanol on the Wettability of Petroleum Fluid-Brine-Rock Systems.
    Lu Y; Najafabadi NF; Firoozabadi A
    Langmuir; 2019 Mar; 35(12):4263-4269. PubMed ID: 30821470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant-induced wettability reversal on oil-wet calcite surfaces: Experimentation and molecular dynamics simulations with scaled-charges.
    Tetteh J; Bai S; Kubelka J; Piri M
    J Colloid Interface Sci; 2022 Mar; 609():890-900. PubMed ID: 34848057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divalent Cd and Pb uptake on calcite {1014} cleavage faces: an XPS and AFM study.
    Chada VG; Hausner DB; Strongin DR; Rouff AA; Reeder RJ
    J Colloid Interface Sci; 2005 Aug; 288(2):350-60. PubMed ID: 15927599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion exchange model for reversible sorption of divalent metals on calcite: implications for natural environments.
    Tertre E; Page J; Beaucaire C
    Environ Sci Technol; 2012 Sep; 46(18):10055-62. PubMed ID: 22834863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Humidity-induced restructuring of the calcite surface and the effect of divalent heavy metals.
    Hausner DB; Reeder RJ; Strongin DR
    J Colloid Interface Sci; 2007 Jan; 305(1):101-10. PubMed ID: 17052725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.