BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27352945)

  • 61. Improving phylogenetic resolution of the Lamiales using the complete plastome sequences of six Penstemon species.
    Stettler JM; Stevens MR; Meservey LM; Crump WW; Grow JD; Porter SJ; Love LS; Maughan PJ; Jellen EN
    PLoS One; 2021; 16(12):e0261143. PubMed ID: 34910738
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Comparative analyses of Linderniaceae plastomes, with implications for its phylogeny and evolution.
    Yan R; Geng Y; Jia Y; Xiang C; Zhou X; Hu G
    Front Plant Sci; 2023; 14():1265641. PubMed ID: 37828930
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Plastid Phylogenomic Analyses Resolve Tofieldiaceae as the Root of the Early Diverging Monocot Order Alismatales.
    Luo Y; Ma PF; Li HT; Yang JB; Wang H; Li DZ
    Genome Biol Evol; 2016 Apr; 8(3):932-45. PubMed ID: 26957030
    [TBL] [Abstract][Full Text] [Related]  

  • 64. accD nuclear transfer of Platycodon grandiflorum and the plastid of early Campanulaceae.
    Hong CP; Park J; Lee Y; Lee M; Park SG; Uhm Y; Lee J; Kim CK
    BMC Genomics; 2017 Aug; 18(1):607. PubMed ID: 28800729
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Molecular phylogenomics of the tribe Shoreeae (Dipterocarpaceae) using whole plastid genomes.
    Heckenhauer J; Paun O; Chase MW; Ashton PS; Kamariah AS; Samuel R
    Ann Bot; 2019 May; 123(5):857-865. PubMed ID: 30541053
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Comprehensive Comparative Analyses of
    Huang J; Lu Z; Lin C; Xu W; Liu Y
    Genes (Basel); 2023 Sep; 14(10):. PubMed ID: 37895243
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The Complete Plastid Genome of Lagerstroemia fauriei and Loss of rpl2 Intron from Lagerstroemia (Lythraceae).
    Gu C; Tembrock LR; Johnson NG; Simmons MP; Wu Z
    PLoS One; 2016; 11(3):e0150752. PubMed ID: 26950701
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Plastid phylogenomic analyses of the Selaginella sanguinolenta group (Selaginellaceae) reveal conflict signatures resulting from sequence types, outlier genes, and pervasive RNA editing.
    Zhang MH; Xiang QP; Zhang XC
    Mol Phylogenet Evol; 2022 Aug; 173():107507. PubMed ID: 35589053
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Comparative analysis of the complete plastid genomes in Prunus subgenus Cerasus (Rosaceae): Molecular structures and phylogenetic relationships.
    Li M; Song YF; Sylvester SP; Sylvester SP; Wang XR
    PLoS One; 2022; 17(4):e0266535. PubMed ID: 35385520
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Comparative analyses of plastid genomes from fourteen Cornales species: inferences for phylogenetic relationships and genome evolution.
    Fu CN; Li HT; Milne R; Zhang T; Ma PF; Yang J; Li DZ; Gao LM
    BMC Genomics; 2017 Dec; 18(1):956. PubMed ID: 29216844
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Extreme Reconfiguration of Plastid Genomes in Papaveraceae: Rearrangements, Gene Loss, Pseudogenization, IR Expansion, and Repeats.
    Cao J; Wang H; Cao Y; Kan S; Li J; Liu Y
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396955
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Interspecific Plastome Recombination Reflects Ancient Reticulate Evolution in Picea (Pinaceae).
    Sullivan AR; Schiffthaler B; Thompson SL; Street NR; Wang XR
    Mol Biol Evol; 2017 Jul; 34(7):1689-1701. PubMed ID: 28383641
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The complete plastid genomes of Ophrys iricolor and O. sphegodes (Orchidaceae) and comparative analyses with other orchids.
    Roma L; Cozzolino S; Schlüter PM; Scopece G; Cafasso D
    PLoS One; 2018; 13(9):e0204174. PubMed ID: 30226857
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Extensive genomic rearrangements mediated by repetitive sequences in plastomes of Medicago and its relatives.
    Wu S; Chen J; Li Y; Liu A; Li A; Yin M; Shrestha N; Liu J; Ren G
    BMC Plant Biol; 2021 Sep; 21(1):421. PubMed ID: 34521343
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Plastid Phylogenomics Resolve Deep Relationships among Eupolypod II Ferns with Rapid Radiation and Rate Heterogeneity.
    Wei R; Yan YH; Harris AJ; Kang JS; Shen H; Xiang QP; Zhang XC
    Genome Biol Evol; 2017 Jun; 9(6):1646-1657. PubMed ID: 28854625
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The Complete Chloroplast Genome Sequence of a Relict Conifer Glyptostrobus pensilis: Comparative Analysis and Insights into Dynamics of Chloroplast Genome Rearrangement in Cupressophytes and Pinaceae.
    Hao Z; Cheng T; Zheng R; Xu H; Zhou Y; Li M; Lu F; Dong Y; Liu X; Chen J; Shi J
    PLoS One; 2016; 11(8):e0161809. PubMed ID: 27560965
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Comparative analysis of plastid genomes of non-photosynthetic Ericaceae and their photosynthetic relatives.
    Logacheva MD; Schelkunov MI; Shtratnikova VY; Matveeva MV; Penin AA
    Sci Rep; 2016 Jul; 6():30042. PubMed ID: 27452401
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Plastid phylogenomics provides novel insights into the infrafamilial relationship of Polypodiaceae.
    Wei R; Yang J; He LJ; Liu HM; Hu JY; Liang SQ; Wei XP; Zhao CF; Zhang XC
    Cladistics; 2021 Dec; 37(6):717-727. PubMed ID: 34841589
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Organelle Genomes of
    Zhao Z; Li Y; Zhai JW; Liu ZJ; Li MH
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338856
    [No Abstract]   [Full Text] [Related]  

  • 80. Phylogeny of Diplazium (Athyriaceae) revisited: Resolving the backbone relationships based on plastid genomes and phylogenetic tree space analysis.
    Wei R; Zhang XC
    Mol Phylogenet Evol; 2020 Feb; 143():106699. PubMed ID: 31809851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.