These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 27353041)

  • 1. Lipid extraction mediates aggregation of carbon nanospheres in pulmonary surfactant monolayers.
    Yue T; Xu Y; Li S; Zhang X; Huang F
    Phys Chem Chem Phys; 2016 Jul; 18(28):18923-33. PubMed ID: 27353041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of nanoparticles across pulmonary surfactant monolayer: a molecular dynamics study.
    Xu Y; Deng L; Ren H; Zhang X; Huang F; Yue T
    Phys Chem Chem Phys; 2017 Jul; 19(27):17568-17576. PubMed ID: 28621369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrashort Single-Walled Carbon Nanotubes Insert into a Pulmonary Surfactant Monolayer via Self-Rotation: Poration and Mechanical Inhibition.
    Yue T; Xu Y; Li S; Luo Z; Zhang X; Huang F
    J Phys Chem B; 2017 Apr; 121(13):2797-2807. PubMed ID: 28291369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of a lipid composition and a surfactant on the characteristics of the solid lipid microspheres and nanospheres (SLM and SLN).
    Sznitowska M; Wolska E; Baranska H; Cal K; Pietkiewicz J
    Eur J Pharm Biopharm; 2017 Jan; 110():24-30. PubMed ID: 27815177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical synthesis of carbon nano spheres and its application for detection of ciprofloxacin.
    Ipte PR; Kumar S; Satpati AK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(2):142-150. PubMed ID: 31594467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perturbation of the pulmonary surfactant monolayer by single-walled carbon nanotubes: a molecular dynamics study.
    Xu Y; Luo Z; Li S; Li W; Zhang X; Zuo YY; Huang F; Yue T
    Nanoscale; 2017 Jul; 9(29):10193-10204. PubMed ID: 28485435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure formation in binary mixtures of lipids and detergents: self-assembly and vesicle division.
    Noguchi H
    J Chem Phys; 2013 Jan; 138(2):024907. PubMed ID: 23320721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulation of phase transitions in model lung surfactant monolayers.
    Duncan SL; Dalal IS; Larson RG
    Biochim Biophys Acta; 2011 Oct; 1808(10):2450-65. PubMed ID: 21767528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amphiphilic azobenzenesulfonic acid anionic surfactant for water-soluble, ordered, and luminescent polypyrrole nanospheres.
    Antony MJ; Jayakannan M
    J Phys Chem B; 2007 Nov; 111(44):12772-80. PubMed ID: 17944509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation study of a pulmonary surfactant film interacting with a carbonaceous nanoparticle.
    Choe S; Chang R; Jeon J; Violi A
    Biophys J; 2008 Nov; 95(9):4102-14. PubMed ID: 18923102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of lung surfactant lipid monolayers.
    Rose D; Rendell J; Lee D; Nag K; Booth V
    Biophys Chem; 2008 Dec; 138(3):67-77. PubMed ID: 18845376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulmonary surfactant protein A interacts with gel-like regions in monolayers of pulmonary surfactant lipid extract.
    Worthman LA; Nag K; Rich N; Ruano ML; Casals C; Pérez-Gil J; Keough KM
    Biophys J; 2000 Nov; 79(5):2657-66. PubMed ID: 11053138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Penetration of antimicrobial peptides in a lung surfactant model.
    Souza LMP; Nascimento JB; Romeu AL; Estrada-López ED; Pimentel AS
    Colloids Surf B Biointerfaces; 2018 Jul; 167():345-353. PubMed ID: 29689490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restoration of the interfacial properties of lung surfactant with a newly designed hydrocarbon/fluorocarbon lipid.
    Dilli G; Unsal H; Uslu B; Aydogan N
    Colloids Surf B Biointerfaces; 2014 Oct; 122():566-575. PubMed ID: 25112907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free volume theory applied to lateral diffusion in Langmuir monolayers: atomistic simulations for a protein-free model of lung surfactant.
    Javanainen M; Monticelli L; Bernardino de la Serna J; Vattulainen I
    Langmuir; 2010 Oct; 26(19):15436-44. PubMed ID: 20809600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultraviolet Photoluminescence of Carbon Nanospheres and its Surface Plasmon-Induced Enhancement.
    Gan Z; Pan P; Chen Z; Meng M; Xu H; Yu Z; Chang C; Tao Y
    Small; 2018 Apr; 14(16):e1704239. PubMed ID: 29575595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics study of the effect of cholesterol on the properties of lipid monolayers at low surface tensions.
    Laing C; Baoukina S; Tieleman DP
    Phys Chem Chem Phys; 2009 Mar; 11(12):1916-22. PubMed ID: 19280002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of graphene oxide nanosheets on the ultrastructure and biophysical properties of the pulmonary surfactant film.
    Hu Q; Jiao B; Shi X; Valle RP; Zuo YY; Hu G
    Nanoscale; 2015 Nov; 7(43):18025-9. PubMed ID: 26482703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulations of lung surfactant.
    Baoukina S; Tieleman DP
    Biochim Biophys Acta; 2016 Oct; 1858(10):2431-2440. PubMed ID: 26922885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel aptasensor based on MUC-1 conjugated CNSs for ultrasensitive detection of tumor cells.
    Cao H; Ye D; Zhao Q; Luo J; Zhang S; Kong J
    Analyst; 2014 Oct; 139(19):4917-23. PubMed ID: 25078888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.