These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 27353041)

  • 21. Lung surfactant dysfunction in tuberculosis: effect of mycobacterial tubercular lipids on dipalmitoylphosphatidylcholine surface activity.
    Chimote G; Banerjee R
    Colloids Surf B Biointerfaces; 2005 Nov; 45(3-4):215-23. PubMed ID: 16198543
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres.
    Du D; Zou Z; Shin Y; Wang J; Wu H; Engelhard MH; Liu J; Aksay IA; Lin Y
    Anal Chem; 2010 Apr; 82(7):2989-95. PubMed ID: 20201502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of cholesterol on electrostatics in lipid-protein films of a pulmonary surfactant.
    Finot E; Leonenko Y; Moores B; Eng L; Amrein M; Leonenko Z
    Langmuir; 2010 Feb; 26(3):1929-35. PubMed ID: 20050607
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein-lipid interactions and surface activity in the pulmonary surfactant system.
    Serrano AG; Pérez-Gil J
    Chem Phys Lipids; 2006 Jun; 141(1-2):105-18. PubMed ID: 16600200
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of Lipid Coating in the Transport of Nanodroplets across the Pulmonary Surfactant Layer Revealed by Molecular Dynamics Simulations.
    Xu Y; Li S; Luo Z; Ren H; Zhang X; Huang F; Zuo YY; Yue T
    Langmuir; 2018 Jul; 34(30):9054-9063. PubMed ID: 29985617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of hydrophobic alkylated gold nanoparticles on the phase behavior of monolayers of DPPC and clinical lung surfactant.
    Tatur S; Badia A
    Langmuir; 2012 Jan; 28(1):628-39. PubMed ID: 22118426
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The interactions between surfactants and vesicles: dissipative particle dynamics.
    Huang KC; Lin CM; Tsao HK; Sheng YJ
    J Chem Phys; 2009 Jun; 130(24):245101. PubMed ID: 19566182
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution of lipid aldehydes in phase-separated membranes: A molecular dynamics study.
    Oliveira MC; Yusupov M; Bogaerts A; Cordeiro RM
    Arch Biochem Biophys; 2022 Mar; 717():109136. PubMed ID: 35085576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interplay of mycolic acids, antimycobacterial compounds and pulmonary surfactant membrane: a biophysical approach to disease.
    Pinheiro M; Giner-Casares JJ; Lúcio M; Caio JM; Moiteiro C; Lima JL; Reis S; Camacho L
    Biochim Biophys Acta; 2013 Feb; 1828(2):896-905. PubMed ID: 23022131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interparticle dispersion, membrane curvature, and penetration induced by single-walled carbon nanotubes wrapped with lipids and PEGylated lipids.
    Lee H
    J Phys Chem B; 2013 Feb; 117(5):1337-44. PubMed ID: 23214434
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular mobility in the monolayers of foam films stabilized by porcine lung surfactant.
    Lalchev ZI; Todorov RK; Christova YT; Wilde PJ; Mackie AR; Clark DC
    Biophys J; 1996 Nov; 71(5):2591-601. PubMed ID: 8913597
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Folding of lipid monolayers containing lung surfactant proteins SP-B(1-25) and SP-C studied via coarse-grained molecular dynamics simulations.
    Duncan SL; Larson RG
    Biochim Biophys Acta; 2010 Sep; 1798(9):1632-50. PubMed ID: 20435014
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coarse grained protein-lipid model with application to lipoprotein particles.
    Shih AY; Arkhipov A; Freddolino PL; Schulten K
    J Phys Chem B; 2006 Mar; 110(8):3674-84. PubMed ID: 16494423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tocopheryl succinate-based lipid nanospheres for paclitaxel delivery: preparation, characters, and in vitro release kinetics.
    Shi K; Jiang Y; Zhang M; Wang Y; Cui F
    Drug Deliv; 2010 Jan; 17(1):1-10. PubMed ID: 19941405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress.
    Lai K; Wang B; Zhang Y; Zheng Y
    Phys Chem Chem Phys; 2013 Jan; 15(1):270-8. PubMed ID: 23165312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analyzing the Role of Surfactants in the Colloidal Stability of Nanoparticles in Oil through Coarse-Grained Molecular Dynamics Simulations.
    Griffiths MZ; Shinoda W
    J Phys Chem B; 2021 Jun; 125(23):6315-6321. PubMed ID: 33990135
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of peptide aggregation by lipids: insights from coarse-grained molecular simulations.
    Hung A; Yarovsky I
    J Mol Graph Model; 2011 Feb; 29(5):597-607. PubMed ID: 21146432
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformation and molecular topography of the N-terminal segment of surfactant protein B in structure-promoting environments.
    Gordon LM; Horvath S; Longo ML; Zasadzinski JA; Taeusch HW; Faull K; Leung C; Waring AJ
    Protein Sci; 1996 Aug; 5(8):1662-75. PubMed ID: 8844855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solubilization mechanism of vesicles by surfactants: effect of hydrophobicity.
    Lin CM; Chang GP; Tsao HK; Sheng YJ
    J Chem Phys; 2011 Jul; 135(4):045102. PubMed ID: 21806160
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CHARMM36 united atom chain model for lipids and surfactants.
    Lee S; Tran A; Allsopp M; Lim JB; Hénin J; Klauda JB
    J Phys Chem B; 2014 Jan; 118(2):547-56. PubMed ID: 24341749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.