These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 27353064)
1. Novel proteases from the genome of the carnivorous plant Drosera capensis: Structural prediction and comparative analysis. Butts CT; Bierma JC; Martin RW Proteins; 2016 Oct; 84(10):1517-33. PubMed ID: 27353064 [TBL] [Abstract][Full Text] [Related]
2. Sequence comparison, molecular modeling, and network analysis predict structural diversity in cysteine proteases from the Cape sundew, Drosera capensis. Butts CT; Zhang X; Kelly JE; Roskamp KW; Unhelkar MH; Freites JA; Tahir S; Martin RW Comput Struct Biotechnol J; 2016; 14():271-82. PubMed ID: 27471585 [TBL] [Abstract][Full Text] [Related]
3. Structure prediction and network analysis of chitinases from the Cape sundew, Drosera capensis. Unhelkar MH; Duong VT; Enendu KN; Kelly JE; Tahir S; Butts CT; Martin RW Biochim Biophys Acta Gen Subj; 2017 Mar; 1861(3):636-643. PubMed ID: 28040565 [TBL] [Abstract][Full Text] [Related]
4. Molecular and functional evolution of class I chitinases for plant carnivory in the caryophyllales. Renner T; Specht CD Mol Biol Evol; 2012 Oct; 29(10):2971-85. PubMed ID: 22490823 [TBL] [Abstract][Full Text] [Related]
5. Functional analyses of carnivorous plant-specific amino acid residues in S-like ribonucleases. Arai N; Nishimura E; Kikuchi Y; Ohyama T Biochem Biophys Res Commun; 2015 Sep; 465(1):108-12. PubMed ID: 26235877 [TBL] [Abstract][Full Text] [Related]
6. Genomes of the Venus Flytrap and Close Relatives Unveil the Roots of Plant Carnivory. Palfalvi G; Hackl T; Terhoeven N; Shibata TF; Nishiyama T; Ankenbrand M; Becker D; Förster F; Freund M; Iosip A; Kreuzer I; Saul F; Kamida C; Fukushima K; Shigenobu S; Tamada Y; Adamec L; Hoshi Y; Ueda K; Winkelmann T; Fuchs J; Schubert I; Schwacke R; Al-Rasheid K; Schultz J; Hasebe M; Hedrich R Curr Biol; 2020 Jun; 30(12):2312-2320.e5. PubMed ID: 32413308 [TBL] [Abstract][Full Text] [Related]
7. S-like ribonuclease gene expression in carnivorous plants. Nishimura E; Kawahara M; Kodaira R; Kume M; Arai N; Nishikawa J; Ohyama T Planta; 2013 Nov; 238(5):955-67. PubMed ID: 23959189 [TBL] [Abstract][Full Text] [Related]
8. Feeding on prey increases photosynthetic efficiency in the carnivorous sundew Drosera capensis. Pavlovič A; Krausko M; Libiaková M; Adamec L Ann Bot; 2014 Jan; 113(1):69-78. PubMed ID: 24201141 [TBL] [Abstract][Full Text] [Related]
9. Enzymatic and Structural Characterization of the Major Endopeptidase in the Venus Flytrap Digestion Fluid. Risør MW; Thomsen LR; Sanggaard KW; Nielsen TA; Thøgersen IB; Lukassen MV; Rossen L; Garcia-Ferrer I; Guevara T; Scavenius C; Meinjohanns E; Gomis-Rüth FX; Enghild JJ J Biol Chem; 2016 Jan; 291(5):2271-87. PubMed ID: 26627834 [TBL] [Abstract][Full Text] [Related]
10. Metabolomic analysis reveals reliance on secondary plant metabolites to facilitate carnivory in the Cape sundew, Drosera capensis. Hatcher CR; Sommer U; Heaney LM; Millett J Ann Bot; 2021 Aug; 128(3):301-314. PubMed ID: 34077503 [TBL] [Abstract][Full Text] [Related]
12. Structural and functional characterisation of a class I endochitinase of the carnivorous sundew (Drosera rotundifolia L.). Jopcik M; Moravcikova J; Matusikova I; Bauer M; Rajninec M; Libantova J Planta; 2017 Feb; 245(2):313-327. PubMed ID: 27761648 [TBL] [Abstract][Full Text] [Related]
13. A spotlight on prey-induced metabolite dynamics in sundew. A commentary on: 'Metabolomic analysis reveals reliance on secondary plant metabolites to facilitate carnivory in the Cape sundew, Drosera capensis'. Mithöfer A Ann Bot; 2021 Aug; 128(3):v-vi. PubMed ID: 34302338 [TBL] [Abstract][Full Text] [Related]
14. Structural and functional characteristics of S-like ribonucleases from carnivorous plants. Nishimura E; Jumyo S; Arai N; Kanna K; Kume M; Nishikawa J; Tanase J; Ohyama T Planta; 2014 Jul; 240(1):147-59. PubMed ID: 24771022 [TBL] [Abstract][Full Text] [Related]
15. Molecular characterization and evolution of carnivorous sundew (Drosera rotundifolia L.) class V β-1,3-glucanase. Michalko J; Renner T; Mészáros P; Socha P; Moravčíková J; Blehová A; Libantová J; Polóniová Z; Matušíková I Planta; 2017 Jan; 245(1):77-91. PubMed ID: 27580619 [TBL] [Abstract][Full Text] [Related]
16. Evolution of genome size and genomic GC content in carnivorous holokinetics (Droseraceae). Veleba A; Šmarda P; Zedek F; Horová L; Šmerda J; Bureš P Ann Bot; 2017 Feb; 119(3):409-416. PubMed ID: 28025291 [TBL] [Abstract][Full Text] [Related]
17. Plastome-Wide Rearrangements and Gene Losses in Carnivorous Droseraceae. Nevill PG; Howell KA; Cross AT; Williams AV; Zhong X; Tonti-Filippini J; Boykin LM; Dixon KW; Small I Genome Biol Evol; 2019 Feb; 11(2):472-485. PubMed ID: 30629170 [TBL] [Abstract][Full Text] [Related]
18. Contrasting effect of prey capture on jasmonate accumulation in two genera of aquatic carnivorous plants (Aldrovanda, Utricularia). Jakšová J; Adamec L; Petřík I; Novák O; Šebela M; Pavlovič A Plant Physiol Biochem; 2021 Sep; 166():459-465. PubMed ID: 34166972 [TBL] [Abstract][Full Text] [Related]
19. Protein structure networks provide insight into active site flexibility in esterase/lipases from the carnivorous plant Drosera capensis. Duong VT; Unhelkar MH; Kelly JE; Kim SH; Butts CT; Martin RW Integr Biol (Camb); 2018 Dec; 10(12):768-779. PubMed ID: 30516771 [TBL] [Abstract][Full Text] [Related]
20. The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant Drosera capensis. Krausko M; Perutka Z; Šebela M; Šamajová O; Šamaj J; Novák O; Pavlovič A New Phytol; 2017 Mar; 213(4):1818-1835. PubMed ID: 27933609 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]