These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 27353064)
21. Jasmonate signalling in carnivorous plants: copycat of plant defence mechanisms. Pavlovič A; Mithöfer A J Exp Bot; 2019 Jul; 70(13):3379-3389. PubMed ID: 31120525 [TBL] [Abstract][Full Text] [Related]
22. Phylogeny of the sundews, Drosera (Droseraceae), based on chloroplast rbcL and nuclear 18S ribosomal DNA Sequences. Rivadavia F; Kondo K; Kato M; Hasebe M Am J Bot; 2003 Jan; 90(1):123-30. PubMed ID: 21659087 [TBL] [Abstract][Full Text] [Related]
23. Where Is My Food? Brazilian Flower Fly Steals Prey from Carnivorous Sundews in a Newly Discovered Plant-Animal Interaction. Fleischmann A; Rivadavia F; Gonella PM; Pérez-Bañón C; Mengual X; Rojo S PLoS One; 2016; 11(5):e0153900. PubMed ID: 27144980 [TBL] [Abstract][Full Text] [Related]
24. Trap diversity and evolution in the family Droseraceae. Poppinga S; Hartmeyer SR; Masselter T; Hartmeyer I; Speck T Plant Signal Behav; 2013 Jul; 8(7):e24685. PubMed ID: 23603942 [TBL] [Abstract][Full Text] [Related]
25. Functional characterization of a class III acid endochitinase from the traps of the carnivorous pitcher plant genus, Nepenthes. Rottloff S; Stieber R; Maischak H; Turini FG; Heubl G; Mithöfer A J Exp Bot; 2011 Aug; 62(13):4639-47. PubMed ID: 21633084 [TBL] [Abstract][Full Text] [Related]
26. The protein composition of the digestive fluid from the venus flytrap sheds light on prey digestion mechanisms. Schulze WX; Sanggaard KW; Kreuzer I; Knudsen AD; Bemm F; Thøgersen IB; Bräutigam A; Thomsen LR; Schliesky S; Dyrlund TF; Escalante-Perez M; Becker D; Schultz J; Karring H; Weber A; Højrup P; Hedrich R; Enghild JJ Mol Cell Proteomics; 2012 Nov; 11(11):1306-19. PubMed ID: 22891002 [TBL] [Abstract][Full Text] [Related]
27. Insecticides reduce survival and the expression of traits associated with carnivory of carnivorous plants. Jennings DE; Congelosi AM; Rohr JR Ecotoxicology; 2012 Mar; 21(2):569-75. PubMed ID: 22076028 [TBL] [Abstract][Full Text] [Related]
28. Triggering a false alarm: wounding mimics prey capture in the carnivorous Venus flytrap (Dionaea muscipula). Pavlovič A; Jakšová J; Novák O New Phytol; 2017 Nov; 216(3):927-938. PubMed ID: 28850713 [TBL] [Abstract][Full Text] [Related]
29. An S-like ribonuclease gene is used to generate a trap-leaf enzyme in the carnivorous plant Drosera adelae. Okabe T; Yoshimoto I; Hitoshi M; Ogawa T; Ohyama T FEBS Lett; 2005 Oct; 579(25):5729-33. PubMed ID: 16225872 [TBL] [Abstract][Full Text] [Related]
30. Venus flytrap carnivorous lifestyle builds on herbivore defense strategies. Bemm F; Becker D; Larisch C; Kreuzer I; Escalante-Perez M; Schulze WX; Ankenbrand M; Van de Weyer AL; Krol E; Al-Rasheid KA; Mithöfer A; Weber AP; Schultz J; Hedrich R Genome Res; 2016 Jun; 26(6):812-25. PubMed ID: 27197216 [TBL] [Abstract][Full Text] [Related]
31. Water Cannot Activate Traps of the Carnivorous Sundew Plant Pavlovič A; Vrobel O; Tarkowski P Plants (Basel); 2023 Apr; 12(9):. PubMed ID: 37176877 [TBL] [Abstract][Full Text] [Related]
32. On the Origin of Carnivory: Molecular Physiology and Evolution of Plants on an Animal Diet. Hedrich R; Fukushima K Annu Rev Plant Biol; 2021 Jun; 72():133-153. PubMed ID: 33434053 [TBL] [Abstract][Full Text] [Related]
33. Molecular docking of Glycine max and Medicago truncatula ureases with urea; bioinformatics approaches. Filiz E; Vatansever R; Ozyigit II Mol Biol Rep; 2016 Mar; 43(3):129-40. PubMed ID: 26852122 [TBL] [Abstract][Full Text] [Related]
34. Transcriptome and genome size analysis of the Venus flytrap. Jensen MK; Vogt JK; Bressendorff S; Seguin-Orlando A; Petersen M; Sicheritz-Pontén T; Mundy J PLoS One; 2015; 10(4):e0123887. PubMed ID: 25886597 [TBL] [Abstract][Full Text] [Related]
35. Glucan-rich diet is digested and taken up by the carnivorous sundew (Drosera rotundifolia L.): implication for a novel role of plant β-1,3-glucanases. Michalko J; Socha P; Mészáros P; Blehová A; Libantová J; Moravčíková J; Matušíková I Planta; 2013 Oct; 238(4):715-25. PubMed ID: 23832529 [TBL] [Abstract][Full Text] [Related]
36. Discovery of digestive enzymes in carnivorous plants with focus on proteases. Ravee R; Mohd Salleh F'; Goh HH PeerJ; 2018; 6():e4914. PubMed ID: 29888132 [TBL] [Abstract][Full Text] [Related]
37. Long-read sequencing uncovers the adaptive topography of a carnivorous plant genome. Lan T; Renner T; Ibarra-Laclette E; Farr KM; Chang TH; Cervantes-Pérez SA; Zheng C; Sankoff D; Tang H; Purbojati RW; Putra A; Drautz-Moses DI; Schuster SC; Herrera-Estrella L; Albert VA Proc Natl Acad Sci U S A; 2017 May; 114(22):E4435-E4441. PubMed ID: 28507139 [No Abstract] [Full Text] [Related]
38. Expression and characterization of plant aspartic protease nepenthesin-1 from Nepenthes gracilis. Kadek A; Tretyachenko V; Mrazek H; Ivanova L; Halada P; Rey M; Schriemer DC; Man P Protein Expr Purif; 2014 Mar; 95():121-8. PubMed ID: 24365662 [TBL] [Abstract][Full Text] [Related]
39. A novel insight into the cost-benefit model for the evolution of botanical carnivory. Pavlovič A; Saganová M Ann Bot; 2015 Jun; 115(7):1075-92. PubMed ID: 25948113 [TBL] [Abstract][Full Text] [Related]