These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 27353328)

  • 1. Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression.
    Radzisheuskaya A; Shlyueva D; Müller I; Helin K
    Nucleic Acids Res; 2016 Oct; 44(18):e141. PubMed ID: 27353328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Levels of sgRNA as a Major Factor Affecting CRISPRi Knockdown Efficiency in K562 Cells].
    Wang Y; Xie Y; Dong ZC; Jiang XJ; Gong P; Lu J; Wan F
    Mol Biol (Mosk); 2021; 55(1):86-95. PubMed ID: 33566028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward tunable dynamic repression using CRISPRi.
    Jang S; Jang S; Jung GY
    Biotechnol J; 2018 Sep; 13(9):e1800152. PubMed ID: 29714047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional repression of endogenous genes in BmE cells using CRISPRi system.
    Wang X; Ma S; Liu Y; Lu W; Sun L; Zhao P; Xia Q
    Insect Biochem Mol Biol; 2019 Aug; 111():103172. PubMed ID: 31103783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulated Expression of sgRNAs Tunes CRISPRi in E. coli.
    Fontana J; Dong C; Ham JY; Zalatan JG; Carothers JM
    Biotechnol J; 2018 Sep; 13(9):e1800069. PubMed ID: 29635744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. dCas9 regulator to neutralize competition in CRISPRi circuits.
    Huang HH; Bellato M; Qian Y; Cárdenas P; Pasotti L; Magni P; Del Vecchio D
    Nat Commun; 2021 Mar; 12(1):1692. PubMed ID: 33727557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishment of CRISPR interference in Methylorubrum extorquens and application of rapidly mining a new phytoene desaturase involved in carotenoid biosynthesis.
    Mo XH; Zhang H; Wang TM; Zhang C; Zhang C; Xing XH; Yang S
    Appl Microbiol Biotechnol; 2020 May; 104(10):4515-4532. PubMed ID: 32215707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximizing CRISPRi efficacy and accessibility with dual-sgRNA libraries and optimal effectors.
    Replogle JM; Bonnar JL; Pogson AN; Liem CR; Maier NK; Ding Y; Russell BJ; Wang X; Leng K; Guna A; Norman TM; Pak RA; Ramos DM; Ward ME; Gilbert LA; Kampmann M; Weissman JS; Jost M
    Elife; 2022 Dec; 11():. PubMed ID: 36576240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Efficiency of flySAM by Optimization of sgRNA Parameters in
    Mao D; Jia Y; Peng P; Shen D; Ren X; Zhu R; Qiu Y; Han Y; Yu J; Che Q; Li Y; Lu X; Liu LP; Wang Z; Liu Q; Sun J; Ni JQ
    G3 (Bethesda); 2020 Dec; 10(12):4483-4488. PubMed ID: 33020192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation of dCas9-mediated CRISPRi in the fission yeast Schizosaccharomyces pombe.
    Ishikawa K; Soejima S; Masuda F; Saitoh S
    G3 (Bethesda); 2021 Apr; 11(4):. PubMed ID: 33617628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence determinants of improved CRISPR sgRNA design.
    Xu H; Xiao T; Chen CH; Li W; Meyer CA; Wu Q; Wu D; Cong L; Zhang F; Liu JS; Brown M; Liu XS
    Genome Res; 2015 Aug; 25(8):1147-57. PubMed ID: 26063738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of sgRNA target sites for CRISPR-mediated repression of TP53.
    Lawhorn IE; Ferreira JP; Wang CL
    PLoS One; 2014; 9(11):e113232. PubMed ID: 25398078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design.
    Smith JD; Suresh S; Schlecht U; Wu M; Wagih O; Peltz G; Davis RW; Steinmetz LM; Parts L; St Onge RP
    Genome Biol; 2016 Mar; 17():45. PubMed ID: 26956608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPRi is not strand-specific at all loci and redefines the transcriptional landscape.
    Howe FS; Russell A; Lamstaes AR; El-Sagheer A; Nair A; Brown T; Mellor J
    Elife; 2017 Oct; 6():. PubMed ID: 29058669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional Knockdown in Pneumococci Using CRISPR Interference.
    Kjos M
    Methods Mol Biol; 2019; 1968():89-98. PubMed ID: 30929208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A CRISPR Interference Platform for Efficient Genetic Repression in
    Wensing L; Sharma J; Uthayakumar D; Proteau Y; Chavez A; Shapiro RS
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30760609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR interference-based gene repression in the plant growth promoter Paenibacillus sonchi genomovar Riograndensis SBR5.
    Brito LF; Schultenkämper K; Passaglia LMP; Wendisch VF
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):5095-5106. PubMed ID: 32274563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. sgRNA Sequence Motifs Blocking Efficient CRISPR/Cas9-Mediated Gene Editing.
    Graf R; Li X; Chu VT; Rajewsky K
    Cell Rep; 2019 Jan; 26(5):1098-1103.e3. PubMed ID: 30699341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit.
    Chapman B; Han JH; Lee HJ; Ruud I; Kim TH
    Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/dCas9-Mediated Gene Silencing in Two Plant Fungal Pathogens.
    Zhang YM; Zheng L; Xie K
    mSphere; 2023 Feb; 8(1):e0059422. PubMed ID: 36655998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.