These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 27353362)
1. PTOX Mediates Novel Pathways of Electron Transport in Etioplasts of Arabidopsis. Kambakam S; Bhattacharjee U; Petrich J; Rodermel S Mol Plant; 2016 Sep; 9(9):1240-1259. PubMed ID: 27353362 [TBL] [Abstract][Full Text] [Related]
2. The Plastid Terminal Oxidase is a Key Factor Balancing the Redox State of Thylakoid Membrane. Wang D; Fu A Enzymes; 2016; 40():143-171. PubMed ID: 27776780 [TBL] [Abstract][Full Text] [Related]
3. Physiological links among alternative electron transport pathways that reduce and oxidize plastoquinone in Arabidopsis. Okegawa Y; Kobayashi Y; Shikanai T Plant J; 2010 Aug; 63(3):458-68. PubMed ID: 20497376 [TBL] [Abstract][Full Text] [Related]
4. Involvement of a plastid terminal oxidase in plastoquinone oxidation as evidenced by expression of the Arabidopsis thaliana enzyme in tobacco. Joët T; Genty B; Josse EM; Kuntz M; Cournac L; Peltier G J Biol Chem; 2002 Aug; 277(35):31623-30. PubMed ID: 12050159 [TBL] [Abstract][Full Text] [Related]
5. The Mechanism of Variegation in immutans Provides Insight into Chloroplast Biogenesis. Foudree A; Putarjunan A; Kambakam S; Nolan T; Fussell J; Pogorelko G; Rodermel S Front Plant Sci; 2012; 3():260. PubMed ID: 23205022 [TBL] [Abstract][Full Text] [Related]
6. Flexibility in photosynthetic electron transport: the physiological role of plastoquinol terminal oxidase (PTOX). McDonald AE; Ivanov AG; Bode R; Maxwell DP; Rodermel SR; Hüner NP Biochim Biophys Acta; 2011 Aug; 1807(8):954-67. PubMed ID: 21056542 [TBL] [Abstract][Full Text] [Related]
7. A novel nucleus-encoded chloroplast protein, PIFI, is involved in NAD(P)H dehydrogenase complex-mediated chlororespiratory electron transport in Arabidopsis. Wang D; Portis AR Plant Physiol; 2007 Aug; 144(4):1742-52. PubMed ID: 17573537 [TBL] [Abstract][Full Text] [Related]
8. Effect of constitutive expression of bacterial phytoene desaturase CRTI on photosynthetic electron transport in Arabidopsis thaliana. Galzerano D; Feilke K; Schaub P; Beyer P; Krieger-Liszkay A Biochim Biophys Acta; 2014 Mar; 1837(3):345-53. PubMed ID: 24378845 [TBL] [Abstract][Full Text] [Related]
9. Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Rumeau D; Peltier G; Cournac L Plant Cell Environ; 2007 Sep; 30(9):1041-51. PubMed ID: 17661746 [TBL] [Abstract][Full Text] [Related]
10. The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology. Nawrocki WJ; Tourasse NJ; Taly A; Rappaport F; Wollman FA Annu Rev Plant Biol; 2015; 66():49-74. PubMed ID: 25580838 [TBL] [Abstract][Full Text] [Related]
11. gigantea suppresses immutans variegation by interactions with cytokinin and gibberellin signaling pathways. Putarjunan A; Rodermel S Plant Physiol; 2014 Dec; 166(4):2115-32. PubMed ID: 25349324 [TBL] [Abstract][Full Text] [Related]
12. Kinetic properties and physiological role of the plastoquinone terminal oxidase (PTOX) in a vascular plant. Trouillard M; Shahbazi M; Moyet L; Rappaport F; Joliot P; Kuntz M; Finazzi G Biochim Biophys Acta; 2012 Dec; 1817(12):2140-8. PubMed ID: 22982477 [TBL] [Abstract][Full Text] [Related]
13. Chlororespiration and grana hyperstacking: how an Arabidopsis double mutant can survive despite defects in starch biosynthesis and daily carbon export from chloroplasts. Häusler RE; Geimer S; Kunz HH; Schmitz J; Dörmann P; Bell K; Hetfeld S; Guballa A; Flügge UI Plant Physiol; 2009 Jan; 149(1):515-33. PubMed ID: 18978072 [TBL] [Abstract][Full Text] [Related]
14. Electron transport pathways in isolated chromoplasts from Narcissus pseudonarcissus L. Grabsztunowicz M; Mulo P; Baymann F; Mutoh R; Kurisu G; Sétif P; Beyer P; Krieger-Liszkay A Plant J; 2019 Jul; 99(2):245-256. PubMed ID: 30888718 [TBL] [Abstract][Full Text] [Related]
15. A qualitative analysis of the regulation of cyclic electron flow around photosystem I from the post-illumination chlorophyll fluorescence transient in Arabidopsis: a new platform for the in vivo investigation of the chloroplast redox state. Gotoh E; Matsumoto M; Ogawa K; Kobayashi Y; Tsuyama M Photosynth Res; 2010 Feb; 103(2):111-23. PubMed ID: 20054711 [TBL] [Abstract][Full Text] [Related]
16. Interplay between non-photochemical plastoquinone reduction and re-oxidation in pre-illuminated Chlamydomonas reinhardtii: a chlorophyll fluorescence study. Houyoux PA; Ghysels B; Lecler R; Franck F Photosynth Res; 2011 Oct; 110(1):13-24. PubMed ID: 21948601 [TBL] [Abstract][Full Text] [Related]
17. Understanding chloroplast biogenesis using second-site suppressors of immutans and var2. Putarjunan A; Liu X; Nolan T; Yu F; Rodermel S Photosynth Res; 2013 Oct; 116(2-3):437-53. PubMed ID: 23703455 [TBL] [Abstract][Full Text] [Related]
18. Respiratory processes in non-photosynthetic plastids. Renato M; Boronat A; Azcón-Bieto J Front Plant Sci; 2015; 6():496. PubMed ID: 26236317 [TBL] [Abstract][Full Text] [Related]
19. Polymorphisms in plastoquinol oxidase (PTOX) from Arabidopsis accessions indicate SNP-induced structural variants associated with altitude and rainfall. Thiers KLL; da Silva JHM; Sartori GR; Dos Santos CP; Saraiva KDDC; Roque ALM; Arnholdt-Schmitt B; Costa JH J Bioenerg Biomembr; 2019 Apr; 51(2):151-164. PubMed ID: 30617736 [TBL] [Abstract][Full Text] [Related]
20. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae. Pogorelko GV; Kambakam S; Nolan T; Foudree A; Zabotina OA; Rodermel SR PLoS One; 2016; 11(4):e0150983. PubMed ID: 27050746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]