These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 27353432)
1. Gaseous product mixture from Fischer-Tropsch synthesis as an efficient carbon feedstock for low temperature CVD growth of carbon nanotube carpets. Almkhelfe H; Carpena-Núñez J; Back TC; Amama PB Nanoscale; 2016 Jul; 8(27):13476-87. PubMed ID: 27353432 [TBL] [Abstract][Full Text] [Related]
2. Low temperature synthesis of vertically aligned carbon nanotubes with electrical contact to metallic substrates enabled by thermal decomposition of the carbon feedstock. Nessim GD; Seita M; O'Brien KP; Hart AJ; Bonaparte RK; Mitchell RR; Thompson CV Nano Lett; 2009 Oct; 9(10):3398-405. PubMed ID: 19719143 [TBL] [Abstract][Full Text] [Related]
3. Effects of Catalyst Pretreatment on Carbon Nanotube Synthesis from Methane Using Thin Stainless-Steel Foil as Catalyst by Chemical Vapor Deposition Method. Huynh TM; Nguyen S; Nguyen NTK; Nguyen HM; Do NUP; Nguyen DC; Nguyen LH; Nguyen CV Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33379133 [TBL] [Abstract][Full Text] [Related]
4. Critical Role of the Acetylene Content and Fe/C Ratio on the Thickness and Density of Vertically Aligned Carbon Nanotubes Grown at Low Temperature by a One-Step Catalytic Chemical Vapor Deposition Process. Combrisson A; Charon E; Pinault M; Reynaud C; Mayne-L'Hermite M Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889563 [TBL] [Abstract][Full Text] [Related]
5. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications. Penza M; Rossi R; Alvisi M; Serra E Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374 [TBL] [Abstract][Full Text] [Related]
6. Low-temperature catalyst activator: mechanism of dense carbon nanotube forest growth studied using synchrotron radiation. Takashima A; Izumi Y; Ikenaga E; Ohkochi T; Kotsugi M; Matsushita T; Muro T; Kawabata A; Murakami T; Nihei M; Yokoyama N IUCrJ; 2014 Jul; 1(Pt 4):221-7. PubMed ID: 25075343 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of Vertically-Aligned Carbon Nanotubes from Langmuir-Blodgett Films Deposited Fe Nanoparticles on Al2O3/Al/SiO2/Si Substrate. Takagiwa S; Kanasugi O; Nakamura K; Kushida M J Nanosci Nanotechnol; 2016 Apr; 16(4):3289-94. PubMed ID: 27451619 [TBL] [Abstract][Full Text] [Related]
8. En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays. Boncel S; Pattinson SW; Geiser V; Shaffer MS; Koziol KK Beilstein J Nanotechnol; 2014; 5():219-33. PubMed ID: 24605289 [TBL] [Abstract][Full Text] [Related]
9. Rational Modification of a Metallic Substrate for CVD Growth of Carbon Nanotubes. Li X; Baker-Fales M; Almkhelfe H; Gaede NR; Harris TS; Amama PB Sci Rep; 2018 Mar; 8(1):4349. PubMed ID: 29531239 [TBL] [Abstract][Full Text] [Related]
10. What is below the support layer affects carbon nanotube growth: an iron catalyst reservoir yields taller nanotube carpets. Shawat E; Mor V; Oakes L; Fleger Y; Pint CL; Nessim GD Nanoscale; 2014; 6(3):1545-51. PubMed ID: 24323364 [TBL] [Abstract][Full Text] [Related]
11. A critical role of catalyst morphology in low-temperature synthesis of carbon nanotube-transition metal oxide nanocomposite. Jin X; Lim J; Ha Y; Kwon NH; Shin H; Kim IY; Lee NS; Kim MH; Kim H; Hwang SJ Nanoscale; 2017 Aug; 9(34):12416-12424. PubMed ID: 28809428 [TBL] [Abstract][Full Text] [Related]
12. The Synergistic Effect of a Bimetallic Catalyst for the Synthesis of Carbon Nanotube Aerogels and their Predominant Chirality. Moon SY; Kim WS Chemistry; 2019 Oct; 25(59):13635-13639. PubMed ID: 31407390 [TBL] [Abstract][Full Text] [Related]
13. Growth of long and aligned multi-walled carbon nanotubes on carbon and metal substrates. Delmas M; Pinault M; Patel S; Porterat D; Reynaud C; Mayne-L'Hermite M Nanotechnology; 2012 Mar; 23(10):105604. PubMed ID: 22362164 [TBL] [Abstract][Full Text] [Related]
14. Comparing Ultralong Carbon Nanotube Growth from Methane over Mono- and Bi-Metallic Iron Chloride Catalysts. Yick T; Gangoli VS; Orbaek White A Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570489 [TBL] [Abstract][Full Text] [Related]
15. Direct wall number control of carbon nanotube forests from engineered iron catalysts. Chiang WH; Futaba DN; Yumura M; Hata K J Nanosci Nanotechnol; 2013 Apr; 13(4):2745-51. PubMed ID: 23763154 [TBL] [Abstract][Full Text] [Related]
16. Engineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst. Meshot ER; Plata DL; Tawfick S; Zhang Y; Verploegen EA; Hart AJ ACS Nano; 2009 Sep; 3(9):2477-86. PubMed ID: 19691287 [TBL] [Abstract][Full Text] [Related]
17. Wetting behavior and activity of catalyst supports in carbon nanotube carpet growth. Amama PB; Putnam SA; Barron AR; Maruyama B Nanoscale; 2013 Apr; 5(7):2642-6. PubMed ID: 23446360 [TBL] [Abstract][Full Text] [Related]
18. Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes. Li Z; Dervishi E; Xu Y; Ma X; Saini V; Biris AS; Little R; Biris AR; Lupu D J Chem Phys; 2008 Aug; 129(7):074712. PubMed ID: 19044797 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of Vertical Carbon Nanotube Interconnect Structures Using CMOS-Compatible Catalysts. Ma Z; Zhou S; Zhou C; Xiao Y; Li S; Chan M Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32992981 [TBL] [Abstract][Full Text] [Related]
20. Adsorption of water and n-hexane on pristine and oxidized carbon nanotube supports of cobalt-based Fischer-Tropsch catalysts. Chernyak SA; Strokova NE; Fedorova ES; Ivanov AS; Maslakov KI; Savilov SV; Lunin VV Phys Chem Chem Phys; 2019 Jun; 21(24):13234-13240. PubMed ID: 31180100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]