These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 27353858)
1. Effect of NADH kinase on poly-3-hydroxybutyrate production by recombinant Escherichia coli. Hong PH; Zhang J; Liu XJ; Tan TW; Li ZJ J Biosci Bioeng; 2016 Dec; 122(6):685-688. PubMed ID: 27353858 [TBL] [Abstract][Full Text] [Related]
2. Overexpression of NAD kinase in recombinant Escherichia coli harboring the phbCAB operon improves poly(3-hydroxybutyrate) production. Li ZJ; Cai L; Wu Q; Chen GQ Appl Microbiol Biotechnol; 2009 Jul; 83(5):939-47. PubMed ID: 19357844 [TBL] [Abstract][Full Text] [Related]
3. Redox Engineering by Ectopic Overexpression of NADH Kinase in Recombinant Pichia pastoris ( Tomàs-Gamisans M; Andrade CCP; Maresca F; Monforte S; Ferrer P; Albiol J Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31757828 [TBL] [Abstract][Full Text] [Related]
4. Overexpression of ZWF1 and POS5 improves carotenoid biosynthesis in recombinant Saccharomyces cerevisiae. Zhao X; Shi F; Zhan W Lett Appl Microbiol; 2015 Oct; 61(4):354-60. PubMed ID: 26179622 [TBL] [Abstract][Full Text] [Related]
5. Enhanced production of poly-3-hydroxybutyrate by Escherichia coli over-expressing multiple copies of NAD kinase integrated in the host genome. Zhang J; Gao X; Hong PH; Li ZJ; Tan TW Biotechnol Lett; 2015 Jun; 37(6):1273-8. PubMed ID: 25724717 [TBL] [Abstract][Full Text] [Related]
6. Synthetic lethal and biochemical analyses of NAD and NADH kinases in Saccharomyces cerevisiae establish separation of cellular functions. Bieganowski P; Seidle HF; Wojcik M; Brenner C J Biol Chem; 2006 Aug; 281(32):22439-45. PubMed ID: 16760478 [TBL] [Abstract][Full Text] [Related]
7. Effects of NADH kinase on NADPH-dependent biotransformation processes in Escherichia coli. Lee WH; Kim JW; Park EH; Han NS; Kim MD; Seo JH Appl Microbiol Biotechnol; 2013 Feb; 97(4):1561-9. PubMed ID: 23053084 [TBL] [Abstract][Full Text] [Related]
8. [Effects of overexpression of NADH kinase gene on ethanol fermentation by Saccharomyces cerevisiae]. Wang H; Zhang L; Shi G Sheng Wu Gong Cheng Xue Bao; 2014 Sep; 30(9):1381-9. PubMed ID: 25720153 [TBL] [Abstract][Full Text] [Related]
9. Structural determinants of discrimination of NAD+ from NADH in yeast mitochondrial NADH kinase Pos5. Ando T; Ohashi K; Ochiai A; Mikami B; Kawai S; Murata K J Biol Chem; 2011 Aug; 286(34):29984-92. PubMed ID: 21730068 [TBL] [Abstract][Full Text] [Related]
10. Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli. Sanchez AM; Andrews J; Hussein I; Bennett GN; San KY Biotechnol Prog; 2006; 22(2):420-5. PubMed ID: 16599556 [TBL] [Abstract][Full Text] [Related]
11. Anaerobic poly-3-D-hydroxybutyrate production from xylose in recombinant Saccharomyces cerevisiae using a NADH-dependent acetoacetyl-CoA reductase. de Las Heras AM; Portugal-Nunes DJ; Rizza N; Sandström AG; Gorwa-Grauslund MF Microb Cell Fact; 2016 Nov; 15(1):197. PubMed ID: 27863495 [TBL] [Abstract][Full Text] [Related]
12. Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation. Lee WH; Kim MD; Jin YS; Seo JH Appl Microbiol Biotechnol; 2013 Apr; 97(7):2761-72. PubMed ID: 23420268 [TBL] [Abstract][Full Text] [Related]
13. POS5 gene of Saccharomyces cerevisiae encodes a mitochondrial NADH kinase required for stability of mitochondrial DNA. Strand MK; Stuart GR; Longley MJ; Graziewicz MA; Dominick OC; Copeland WC Eukaryot Cell; 2003 Aug; 2(4):809-20. PubMed ID: 12912900 [TBL] [Abstract][Full Text] [Related]
14. Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae. Shi F; Kawai S; Mori S; Kono E; Murata K FEBS J; 2005 Jul; 272(13):3337-49. PubMed ID: 15978040 [TBL] [Abstract][Full Text] [Related]
15. A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae. Outten CE; Culotta VC EMBO J; 2003 May; 22(9):2015-24. PubMed ID: 12727869 [TBL] [Abstract][Full Text] [Related]
16. Effects of recombinant precursor pathway variations on poly[(R)-3-hydroxybutyrate] synthesis in Saccharomyces cerevisiae. Carlson R; Srienc F J Biotechnol; 2006 Jul; 124(3):561-73. PubMed ID: 16530287 [TBL] [Abstract][Full Text] [Related]
17. Regeneration of NADPH Coupled with HMG-CoA Reductase Activity Increases Squalene Synthesis in Saccharomyces cerevisiae. Paramasivan K; Mutturi S J Agric Food Chem; 2017 Sep; 65(37):8162-8170. PubMed ID: 28845666 [TBL] [Abstract][Full Text] [Related]
18. [Cofactor engineering strategy for enhanced S-adenosylmethionine production in Saccharomyces cerevisiae]. Chen Y Sheng Wu Gong Cheng Xue Bao; 2018 Feb; 34(2):246-254. PubMed ID: 29424138 [TBL] [Abstract][Full Text] [Related]
19. Improving poly-3-hydroxybutyrate production in Escherichia coli by combining the increase in the NADPH pool and acetyl-CoA availability. Centeno-Leija S; Huerta-Beristain G; Giles-Gómez M; Bolivar F; Gosset G; Martinez A Antonie Van Leeuwenhoek; 2014 Apr; 105(4):687-96. PubMed ID: 24500003 [TBL] [Abstract][Full Text] [Related]
20. Microbial Synthesis of 5-Aminolevulinic Acid and Its Coproduction with Polyhydroxybutyrate. Li T; Guo YY; Qiao GQ; Chen GQ ACS Synth Biol; 2016 Nov; 5(11):1264-1274. PubMed ID: 27238205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]