BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27354312)

  • 1. Spin-orbit effects on the (119)Sn magnetic-shielding tensor in solids: a ZORA/DFT investigation.
    Alkan F; Holmes ST; Iuliucci RJ; Mueller KT; Dybowski C
    Phys Chem Chem Phys; 2016 Jul; 18(28):18914-22. PubMed ID: 27354312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Co-Ordination Chemistry and Oxidation State on the (207)Pb Magnetic-Shielding Tensor: A DFT/ZORA Investigation.
    Alkan F; Dybowski C
    J Phys Chem A; 2016 Jan; 120(1):161-8. PubMed ID: 26683366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spin-orbit effects on the
    Alkan F; Dybowski C
    Solid State Nucl Magn Reson; 2018 Nov; 95():6-11. PubMed ID: 30189330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A DFT/ZORA Study of Cadmium Magnetic Shielding Tensors: Analysis of Relativistic Effects and Electronic-State Approximations.
    Holmes ST; Schurko RW
    J Chem Theory Comput; 2019 Mar; 15(3):1785-1797. PubMed ID: 30721042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of chemical-shift tensors of heavy nuclei: a DFT/ZORA investigation of ¹⁹⁹Hg chemical-shift tensors in solids, and the effects of cluster size and electronic-state approximations.
    Alkan F; Dybowski C
    Phys Chem Chem Phys; 2014 Jul; 16(27):14298-308. PubMed ID: 24916317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical Analysis of Cluster Models and Exchange-Correlation Functionals for Calculating Magnetic Shielding in Molecular Solids.
    Holmes ST; Iuliucci RJ; Mueller KT; Dybowski C
    J Chem Theory Comput; 2015 Nov; 11(11):5229-41. PubMed ID: 26894239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical-shift tensors of heavy nuclei in network solids: a DFT/ZORA investigation of (207)Pb chemical-shift tensors using the bond-valence method.
    Alkan F; Dybowski C
    Phys Chem Chem Phys; 2015 Oct; 17(38):25014-26. PubMed ID: 26345261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the bond-valence method for calculating (29) Si and (31) P magnetic shielding in covalent network solids.
    Holmes ST; Alkan F; Iuliucci RJ; Mueller KT; Dybowski C
    J Comput Chem; 2016 Jul; 37(18):1704-10. PubMed ID: 27117609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of two-component and four-component approaches for calculations of spin-spin coupling constants and NMR shielding constants of transition metal cyanides.
    Wodyński A; Repiský M; Pecul M
    J Chem Phys; 2012 Jul; 137(1):014311. PubMed ID: 22779652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combined experimental and quantum chemistry study of selenium chemical shift tensors.
    Demko BA; Eichele K; Wasylishen RE
    J Phys Chem A; 2006 Dec; 110(50):13537-50. PubMed ID: 17165881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of the LRESC Model on top of DFT Functionals for Relativistic NMR Shielding Calculations.
    Melo JI; Maldonado AF; Aucar GA
    J Chem Inf Model; 2020 Feb; 60(2):722-730. PubMed ID: 31877038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relativistic Approximations to Paramagnetic NMR Chemical Shift and Shielding Anisotropy in Transition Metal Systems.
    Rouf SA; Mareš J; Vaara J
    J Chem Theory Comput; 2017 Aug; 13(8):3731-3745. PubMed ID: 28636359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of stereoelectronic interactions on the relativistic spin-orbit and paramagnetic components of the (13)C NMR shielding tensors of dihaloethenes.
    Viesser RV; Ducati LC; Autschbach J; Tormena CF
    Phys Chem Chem Phys; 2015 Jul; 17(29):19315-24. PubMed ID: 26138131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relativistic DFT Calculation of (119)Sn Chemical Shifts and Coupling Constants in Tin Compounds.
    Bagno A; Casella G; Saielli G
    J Chem Theory Comput; 2006 Jan; 2(1):37-46. PubMed ID: 26626377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation of lanthanum coordination compounds by using solid-state 139La NMR spectroscopy and relativistic density functional theory.
    Willans MJ; Feindel KW; Ooms KJ; Wasylishen RE
    Chemistry; 2005 Dec; 12(1):159-68. PubMed ID: 16224769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.
    Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP
    J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An NMR and relativistic DFT investigation of one-bond nuclear spin-spin coupling in solid triphenyl group-14 chlorides.
    Willans MJ; Demko BA; Wasylishen RE
    Phys Chem Chem Phys; 2006 Jun; 8(23):2733-43. PubMed ID: 16763706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.
    Lantto P; Romero RH; Gómez SS; Aucar GA; Vaara J
    J Chem Phys; 2006 Nov; 125(18):184113. PubMed ID: 17115744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers.
    Jankowska M; Kupka T; Stobiński L; Faber R; Lacerda EG; Sauer SP
    J Comput Chem; 2016 Feb; 37(4):395-403. PubMed ID: 26503739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Exact Exchange and Relativistic Approximations in Calculating
    Alkan F; Holmes ST; Dybowski C
    J Chem Theory Comput; 2017 Oct; 13(10):4741-4752. PubMed ID: 28930636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.