These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 2735437)

  • 21. The resolution of arterial pulses into forward and backward waves as an approach to the determination of the characteristic impedance.
    Sperling W; Bauer RD; Busse R; Körner H; Pasch T
    Pflugers Arch; 1975 Mar; 355(3):217-27. PubMed ID: 124855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Models of the arterial tree.
    Westerhof N; Stergiopulos N
    Stud Health Technol Inform; 2000; 71():65-77. PubMed ID: 10977604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Regional differences in viscosity, elasticity and wall buffering function in systemic arteries: pulse wave analysis of the arterial pressure-diameter relationship].
    Bia D; Aguirre I; Zócalo Y; Devera L; Cabrera Fischer E; Armentano R
    Rev Esp Cardiol; 2005 Feb; 58(2):167-74. PubMed ID: 15743563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scatter in input impedance spectrum may result from the elastic nonlinearity of the arterial wall.
    Stergiopulos N; Meister JJ; Westerhof N
    Am J Physiol; 1995 Oct; 269(4 Pt 2):H1490-5. PubMed ID: 7485585
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Cardiovascular physiology. Elasticity and viscoelasticity of the circulatory system. I. Physical basis. II. Arteries].
    Bettencourt MJ
    Rev Port Cardiol; 1994 Apr; 13(4):337-54,292. PubMed ID: 7917383
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional origin of reflected pressure waves in a multibranched model of the human arterial system.
    Karamanoglu M; Gallagher DE; Avolio AP; O'Rourke MF
    Am J Physiol; 1994 Nov; 267(5 Pt 2):H1681-8. PubMed ID: 7977799
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results.
    Saito M; Ikenaga Y; Matsukawa M; Watanabe Y; Asada T; Lagrée PY
    J Biomech Eng; 2011 Dec; 133(12):121005. PubMed ID: 22206422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of arterial design on pulse wave reflection in a fractal pulmonary network.
    Bennett SH; Goetzman BW; Milstein JM; Pannu JS
    J Appl Physiol (1985); 1996 Mar; 80(3):1033-56. PubMed ID: 8964721
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A device for biomechanical investigations of the viscoelastic characteristics of vital and artificial arterial segments.
    Antonova M
    Clin Hemorheol Microcirc; 2004; 30(3-4):477-80. PubMed ID: 15258391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of 1D blood flow models of the human arterial network to differential pressure predictions.
    Johnson DA; Rose WC; Edwards JW; Naik UP; Beris AN
    J Biomech; 2011 Mar; 44(5):869-76. PubMed ID: 21236432
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aortic input impedance during Mueller maneuver: an evaluation of "effective length".
    Latham RD; Sipkema P; Westerhof N; Rubal BJ
    J Appl Physiol (1985); 1988 Oct; 65(4):1604-10. PubMed ID: 3182524
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-varying pulmonary arterial input impedance via wavelet decomposition.
    Li Z; Grant BJ; Lieber BB
    J Appl Physiol (1985); 1995 Jun; 78(6):2309-19. PubMed ID: 7665434
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy dissipation and pulse wave attenuation in the canine carotid artery.
    Bertram CD
    J Biomech; 1980; 13(12):1061-73. PubMed ID: 7204422
    [No Abstract]   [Full Text] [Related]  

  • 34. Fabrication of elastomer arterial models with specified compliance.
    Stevanov M; Baruthio J; Eclancher B
    J Appl Physiol (1985); 2000 Apr; 88(4):1291-4. PubMed ID: 10749821
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effective length of the arterial circulation determined in the dog by aid of a model of the systemic input impedance.
    Burattini R; Di Carlo S
    IEEE Trans Biomed Eng; 1988 Jan; 35(1):53-61. PubMed ID: 3338812
    [No Abstract]   [Full Text] [Related]  

  • 36. Nonlinear viscoelastic behaviour of canine arterial walls.
    Sato M; Ohshima N
    Med Biol Eng Comput; 1985 Nov; 23(6):565-71. PubMed ID: 4079485
    [No Abstract]   [Full Text] [Related]  

  • 37. A fractional derivative model to describe arterial viscoelasticity.
    Craiem D; Armentano RL
    Biorheology; 2007; 44(4):251-63. PubMed ID: 18094449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Input impedance and reflection coefficient in fractal-like models of asymmetrically branching compliant tubes.
    Brown DJ
    IEEE Trans Biomed Eng; 1996 Jul; 43(7):715-22. PubMed ID: 9216143
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiological interpretation of inductance and low-resistance terms in four-element windkessel models: assessment by generalized sensitivity function analysis.
    Burattini R; Bini S
    Med Eng Phys; 2011 Jul; 33(6):739-54. PubMed ID: 21377401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.