BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27354533)

  • 1. Enzyme surface rigidity tunes the temperature dependence of catalytic rates.
    Isaksen GV; Åqvist J; Brandsdal BO
    Proc Natl Acad Sci U S A; 2016 Jul; 113(28):7822-7. PubMed ID: 27354533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entropy and Enzyme Catalysis.
    Åqvist J; Kazemi M; Isaksen GV; Brandsdal BO
    Acc Chem Res; 2017 Feb; 50(2):199-207. PubMed ID: 28169522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein surface softness is the origin of enzyme cold-adaptation of trypsin.
    Isaksen GV; Åqvist J; Brandsdal BO
    PLoS Comput Biol; 2014 Aug; 10(8):e1003813. PubMed ID: 25165981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold adaptation of enzyme reaction rates.
    Bjelic S; Brandsdal BO; Aqvist J
    Biochemistry; 2008 Sep; 47(38):10049-57. PubMed ID: 18759500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic Adaptation of Psychrophilic Elastase.
    Sočan J; Kazemi M; Isaksen GV; Brandsdal BO; Åqvist J
    Biochemistry; 2018 May; 57(20):2984-2993. PubMed ID: 29726678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature, Dynamics, and Enzyme-Catalyzed Reaction Rates.
    Arcus VL; Mulholland AJ
    Annu Rev Biophys; 2020 May; 49():163-180. PubMed ID: 32040931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Activation Parameters of a Cold-Adapted Short Chain Dehydrogenase Are Insensitive to Enzyme Oligomerization.
    Koenekoop L; van der Ent F; Purg M; Åqvist J
    Biochemistry; 2022 Apr; 61(7):514-522. PubMed ID: 35229609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics of the Purine Nucleoside Phosphorylase Reaction Revealed by Computer Simulations.
    Isaksen GV; Åqvist J; Brandsdal BO
    Biochemistry; 2017 Jan; 56(1):306-312. PubMed ID: 27976868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cold Adaptation of Triosephosphate Isomerase.
    Åqvist J
    Biochemistry; 2017 Aug; 56(32):4169-4176. PubMed ID: 28731682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme catalysis by entropy without Circe effect.
    Kazemi M; Himo F; Åqvist J
    Proc Natl Acad Sci U S A; 2016 Mar; 113(9):2406-11. PubMed ID: 26755610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards Rational Computational Engineering of Psychrophilic Enzymes.
    Sočan J; Isaksen GV; Brandsdal BO; Åqvist J
    Sci Rep; 2019 Dec; 9(1):19147. PubMed ID: 31844096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic analysis of catalysis by the dihydroorotases from hamster and Bacillus caldolyticus, as compared with the uncatalyzed reaction.
    Huang DT; Kaplan J; Menz RI; Katis VL; Wake RG; Zhao F; Wolfenden R; Christopherson RI
    Biochemistry; 2006 Jul; 45(27):8275-83. PubMed ID: 16819826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principles of Cold Adaptation of Fish Lactate Dehydrogenases Revealed by Computer Simulations of the Catalytic Reaction.
    Koenekoop L; Åqvist J
    Mol Biol Evol; 2023 May; 40(5):. PubMed ID: 37116207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the trypsin-III from Monterey sardine (Sardinops caeruleus): Insights on the cold-adaptation from the A236N mutant.
    Carretas-Valdez MI; Moreno-Cordova EN; Ibarra-Hernandez BG; Cinco-Moroyoqui FJ; Castillo-Yañez FJ; Casas-Flores S; Osuna-Amarillas PS; Islas-Osuna MA; Arvizu-Flores AA
    Int J Biol Macromol; 2020 Dec; 164():2701-2710. PubMed ID: 32827617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residue determinants and sequence analysis of cold-adapted trypsins.
    Leiros HK; Willassen NP; Smalås AO
    Extremophiles; 1999 Aug; 3(3):205-19. PubMed ID: 10484177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity.
    Lam SY; Yeung RC; Yu TH; Sze KH; Wong KB
    PLoS Biol; 2011 Mar; 9(3):e1001027. PubMed ID: 21423654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of electrostatics as a strategy for cold-adaptation: a case study of cold- and warm-active elastases.
    Papaleo E; Olufsen M; De Gioia L; Brandsdal BO
    J Mol Graph Model; 2007 Jul; 26(1):93-103. PubMed ID: 17084098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exceptionally large entropy contributions enable the high rates of GTP hydrolysis on the ribosome.
    Åqvist J; Kamerlin SC
    Sci Rep; 2015 Oct; 5():15817. PubMed ID: 26497916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cold-adapted enzymes.
    Siddiqui KS; Cavicchioli R
    Annu Rev Biochem; 2006; 75():403-33. PubMed ID: 16756497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexibility and enzymatic cold-adaptation: a comparative molecular dynamics investigation of the elastase family.
    Papaleo E; Riccardi L; Villa C; Fantucci P; De Gioia L
    Biochim Biophys Acta; 2006 Aug; 1764(8):1397-406. PubMed ID: 16920043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.