These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 27354692)

  • 1. Accurate in silico prediction of species-specific methylation sites based on information gain feature optimization.
    Wen PP; Shi SP; Xu HD; Wang LN; Qiu JD
    Bioinformatics; 2016 Oct; 32(20):3107-3115. PubMed ID: 27354692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SuccFind: a novel succinylation sites online prediction tool via enhanced characteristic strategy.
    Xu HD; Shi SP; Wen PP; Qiu JD
    Bioinformatics; 2015 Dec; 31(23):3748-50. PubMed ID: 26261224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MeMo: a web tool for prediction of protein methylation modifications.
    Chen H; Xue Y; Huang N; Yao X; Sun Z
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W249-53. PubMed ID: 16845004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ProAcePred: prokaryote lysine acetylation sites prediction based on elastic net feature optimization.
    Chen G; Cao M; Luo K; Wang L; Wen P; Shi S
    Bioinformatics; 2018 Dec; 34(23):3999-4006. PubMed ID: 29868863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational prediction of species-specific malonylation sites via enhanced characteristic strategy.
    Wang LN; Shi SP; Xu HD; Wen PP; Qiu JD
    Bioinformatics; 2017 May; 33(10):1457-1463. PubMed ID: 28025199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction and functional analysis of prokaryote lysine acetylation site by incorporating six types of features into Chou's general PseAAC.
    Chen G; Cao M; Yu J; Guo X; Shi S
    J Theor Biol; 2019 Jan; 461():92-101. PubMed ID: 30365945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate prediction of species-specific 2-hydroxyisobutyrylation sites based on machine learning frameworks.
    Wang YG; Huang SY; Wang LN; Zhou ZY; Qiu JD
    Anal Biochem; 2020 Aug; 602():113793. PubMed ID: 32473122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress and challenges in predicting protein methylation sites.
    Shi SP; Xu HD; Wen PP; Qiu JD
    Mol Biosyst; 2015 Oct; 11(10):2610-9. PubMed ID: 26080040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of methylation sites using the composition of K-spaced amino acid pairs.
    Zhang W; Xu X; Yin M; Luo N; Zhang J; Wang J
    Protein Pept Lett; 2013 Aug; 20(8):911-7. PubMed ID: 23276225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating key position and amino acid residue features to identify general and species-specific Ubiquitin conjugation sites.
    Chen X; Qiu JD; Shi SP; Suo SB; Huang SY; Liang RP
    Bioinformatics; 2013 Jul; 29(13):1614-22. PubMed ID: 23626001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate in silico identification of species-specific acetylation sites by integrating protein sequence-derived and functional features.
    Li Y; Wang M; Wang H; Tan H; Zhang Z; Webb GI; Song J
    Sci Rep; 2014 Jul; 4():5765. PubMed ID: 25042424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational identification of protein methylation sites through bi-profile Bayes feature extraction.
    Shao J; Xu D; Tsai SN; Wang Y; Ngai SM
    PLoS One; 2009; 4(3):e4920. PubMed ID: 19290060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PLMLA: prediction of lysine methylation and lysine acetylation by combining multiple features.
    Shi SP; Qiu JD; Sun XY; Suo SB; Huang SY; Liang RP
    Mol Biosyst; 2012 Apr; 8(5):1520-7. PubMed ID: 22402705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Species-Specific Lysine Acetylation Site Prediction Based on a Large Variety of Features Set.
    Wuyun Q; Zheng W; Zhang Y; Ruan J; Hu G
    PLoS One; 2016; 11(5):e0155370. PubMed ID: 27183223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PRmePRed: A protein arginine methylation prediction tool.
    Kumar P; Joy J; Pandey A; Gupta D
    PLoS One; 2017; 12(8):e0183318. PubMed ID: 28813517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome.
    Li F; Li C; Wang M; Webb GI; Zhang Y; Whisstock JC; Song J
    Bioinformatics; 2015 May; 31(9):1411-9. PubMed ID: 25568279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A systematic identification of species-specific protein succinylation sites using joint element features information.
    Hasan MM; Khatun MS; Mollah MNH; Yong C; Guo D
    Int J Nanomedicine; 2017; 12():6303-6315. PubMed ID: 28894368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PMeS: prediction of methylation sites based on enhanced feature encoding scheme.
    Shi SP; Qiu JD; Sun XY; Suo SB; Huang SY; Liang RP
    PLoS One; 2012; 7(6):e38772. PubMed ID: 22719939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational prediction of methylation types of covalently modified lysine and arginine residues in proteins.
    Deng W; Wang Y; Ma L; Zhang Y; Ullah S; Xue Y
    Brief Bioinform; 2017 Jul; 18(4):647-658. PubMed ID: 27241573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iLM-2L: A two-level predictor for identifying protein lysine methylation sites and their methylation degrees by incorporating K-gap amino acid pairs into Chou׳s general PseAAC.
    Ju Z; Cao JZ; Gu H
    J Theor Biol; 2015 Nov; 385():50-7. PubMed ID: 26254214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.