BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27354694)

  • 1. Evaluating the molecule-based prediction of clinical drug responses in cancer.
    Ding Z; Zu S; Gu J
    Bioinformatics; 2016 Oct; 32(19):2891-5. PubMed ID: 27354694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying cancer-related microRNAs based on gene expression data.
    Zhao XM; Liu KQ; Zhu G; He F; Duval B; Richer JM; Huang DS; Jiang CJ; Hao JK; Chen L
    Bioinformatics; 2015 Apr; 31(8):1226-34. PubMed ID: 25505085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OncomiRDB: a database for the experimentally verified oncogenic and tumor-suppressive microRNAs.
    Wang D; Gu J; Wang T; Ding Z
    Bioinformatics; 2014 Aug; 30(15):2237-8. PubMed ID: 24651967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting the biological relationship between TCGA miRNA and mRNA sequencing data using MMiRNA-Viewer.
    Bai Y; Ding L; Baker S; Bai JM; Rath E; Jiang F; Wu J; Jiang H; Stuart G
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):336. PubMed ID: 27766936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IntegratedMRF: random forest-based framework for integrating prediction from different data types.
    Rahman R; Otridge J; Pal R
    Bioinformatics; 2017 May; 33(9):1407-1410. PubMed ID: 28334269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling gene-wise dependencies improves the identification of drug response biomarkers in cancer studies.
    Nikolova O; Moser R; Kemp C; Gönen M; Margolin AA
    Bioinformatics; 2017 May; 33(9):1362-1369. PubMed ID: 28082455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MIRAGAA--a methodology for finding coordinated effects of microRNA expression changes and genome aberrations in cancer.
    Gaire RK; Bailey J; Bearfoot J; Campbell IG; Stuckey PJ; Haviv I
    Bioinformatics; 2010 Jan; 26(2):161-7. PubMed ID: 19933823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A co-module approach for elucidating drug-disease associations and revealing their molecular basis.
    Zhao S; Li S
    Bioinformatics; 2012 Apr; 28(7):955-61. PubMed ID: 22285830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug response prediction by inferring pathway-response associations with kernelized Bayesian matrix factorization.
    Ammad-Ud-Din M; Khan SA; Malani D; Murumägi A; Kallioniemi O; Aittokallio T; Kaski S
    Bioinformatics; 2016 Sep; 32(17):i455-i463. PubMed ID: 27587662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GDSCTools for mining pharmacogenomic interactions in cancer.
    Cokelaer T; Chen E; Iorio F; Menden MP; Lightfoot H; Saez-Rodriguez J; Garnett MJ
    Bioinformatics; 2018 Apr; 34(7):1226-1228. PubMed ID: 29186349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal drug prediction from personal genomics profiles.
    Sheng J; Li F; Wong ST
    IEEE J Biomed Health Inform; 2015 Jul; 19(4):1264-70. PubMed ID: 25781964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification.
    Wu D; Wang D; Zhang MQ; Gu J
    BMC Genomics; 2015 Dec; 16():1022. PubMed ID: 26626453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative preprocessing of RNA-Sequencing data in The Cancer Genome Atlas leads to improved analysis results.
    Rahman M; Jackson LK; Johnson WE; Li DY; Bild AH; Piccolo SR
    Bioinformatics; 2015 Nov; 31(22):3666-72. PubMed ID: 26209429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstructing cancer drug response networks using multitask learning.
    Ruffalo M; Stojanov P; Pillutla VK; Varma R; Bar-Joseph Z
    BMC Syst Biol; 2017 Oct; 11(1):96. PubMed ID: 29017547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying novel associations between small molecules and miRNAs based on integrated molecular networks.
    Lv Y; Wang S; Meng F; Yang L; Wang Z; Wang J; Chen X; Jiang W; Li Y; Li X
    Bioinformatics; 2015 Nov; 31(22):3638-44. PubMed ID: 26198104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Cancer Genome Atlas Clinical Explorer: a web and mobile interface for identifying clinical-genomic driver associations.
    Lee H; Palm J; Grimes SM; Ji HP
    Genome Med; 2015 Oct; 7():112. PubMed ID: 26507825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated Cancer Subtyping using Heterogeneous Genome-Scale Molecular Datasets.
    Arslanturk S; Draghici S; Nguyen T
    Pac Symp Biocomput; 2020; 25():551-562. PubMed ID: 31797627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Practical Guide to The Cancer Genome Atlas (TCGA).
    Wang Z; Jensen MA; Zenklusen JC
    Methods Mol Biol; 2016; 1418():111-41. PubMed ID: 27008012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.