These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 27354698)

  • 1. Structural distinctions of fast and slow bacterial luciferases revealed by phylogenetic analysis.
    Deeva AA; Temlyakova EA; Sorokin AA; Nemtseva EV; Kratasyuk VA
    Bioinformatics; 2016 Oct; 32(20):3053-3057. PubMed ID: 27354698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Random mutagenesis of bacterial luciferase: critical role of Glu175 in the control of luminescence decay.
    Hosseinkhani S; Szittner R; Meighen EA
    Biochem J; 2005 Jan; 385(Pt 2):575-80. PubMed ID: 15352872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interspecific luciferase beta subunit hybrids between Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi.
    Almashanu S; Gendler I; Hadar R; Kuhn J
    Protein Eng; 1996 Sep; 9(9):803-9. PubMed ID: 8888147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent structure of subunits of bacterial luciferase: NH2-terminal sequence demonstrates subunit homology.
    Baldwin TO; Ziegler MM; Powers DA
    Proc Natl Acad Sci U S A; 1979 Oct; 76(10):4887-9. PubMed ID: 315557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of Photobacterium leiognathi and Vibrio fischeri Y1 luciferases with fluorescent (antenna) proteins: bioluminescence effects of the aliphatic additive.
    Petushkov VN; Ketelaars M; Gibson BG; Lee J
    Biochemistry; 1996 Sep; 35(37):12086-93. PubMed ID: 8810914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial Luciferases from
    Nemtseva EV; Gulnov DV; Gerasimova MA; Sukovatyi LA; Burakova LP; Karuzina NE; Melnik BS; Kratasyuk VA
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of α,β-unsaturated aldehydes as potential substrates for bacterial luciferases.
    Brodl E; Ivkovic J; Tabib CR; Breinbauer R; Macheroux P
    Bioorg Med Chem; 2017 Feb; 25(4):1487-1495. PubMed ID: 28126438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trigger factor assists the refolding of heterodimeric but not monomeric luciferases.
    Melkina OE; Goryanin II; Manukhov IV; Baranova AV; Kolb VA; Svetlov MS; Zavilgelsky GB
    Biochemistry (Mosc); 2014 Jan; 79(1):62-8. PubMed ID: 24512665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between luciferases from various species of bioluminescent bacteria and the yellow fluorescent protein of Vibrio fischeri strain Y-1.
    Daubner SC; Baldwin TO
    Biochem Biophys Res Commun; 1989 Jun; 161(3):1191-8. PubMed ID: 2742584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of bacterial bioluminescence in water-organic media.
    Sukovataya IE; Tyulkova NA
    Luminescence; 2001; 16(4):271-3. PubMed ID: 11512142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementation of subunits from different bacterial luciferases. Evidence for the role of the beta subunit in the bioluminescent mechanism.
    Meighen EA; Bartlet I
    J Biol Chem; 1980 Dec; 255(23):11181-7. PubMed ID: 6969259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of hybrid luciferases from subunits of different species of Photobacterium.
    Ruby EG; Hastings JW
    Biochemistry; 1980 Oct; 19(22):4989-93. PubMed ID: 7459320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nucleotide sequence of the luxA and luxB genes of Xenorhabdus luminescens HM and a comparison of the amino acid sequences of luciferases from four species of bioluminescent bacteria.
    Johnston TC; Rucker EB; Cochrum L; Hruska KS; Vandegrift V
    Biochem Biophys Res Commun; 1990 Jul; 170(2):407-15. PubMed ID: 2383248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fusion Vibrio campbellii luciferase as a eukaryotic gene reporter.
    Tinikul R; Thotsaporn K; Thaveekarn W; Jitrapakdee S; Chaiyen P
    J Biotechnol; 2012 Dec; 162(2-3):346-53. PubMed ID: 23000378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional consequences of site-directed mutation of conserved histidyl residues of the bacterial luciferase alpha subunit.
    Xin X; Xi L; Tu SC
    Biochemistry; 1991 Nov; 30(47):11255-62. PubMed ID: 1958663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic fluorescence study of the interaction of lumazine protein with bacterial luciferases.
    Lee J; O'Kane DJ; Gibson BG
    Biophys Chem; 1989 Mar; 33(1):99-111. PubMed ID: 2720095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The complete nucleotide sequence of the lux regulon of Vibrio fischeri and the luxABN region of Photobacterium leiognathi and the mechanism of control of bacterial bioluminescence.
    Baldwin TO; Devine JH; Heckel RC; Lin JW; Shadel GS
    J Biolumin Chemilumin; 1989 Jul; 4(1):326-41. PubMed ID: 2801220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteolytic inactivation of luciferases from three species of luminous marine bacteria, Beneckea harveyi, Photobacterium fischeri, and Photobacterium phosphoreum: evidence of a conserved structural feature.
    Holzman TF; Baldwin TO
    Proc Natl Acad Sci U S A; 1980 Nov; 77(11):6363-7. PubMed ID: 6161366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active site hydrophobicity is critical to the bioluminescence activity of Vibrio harveyi luciferase.
    Li CH; Tu SC
    Biochemistry; 2005 Oct; 44(39):12970-7. PubMed ID: 16185065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-Function Relationships in Temperature Effects on Bacterial Luciferases: Nothing Is Perfect.
    Deeva AA; Lisitsa AE; Sukovatyi LA; Melnik TN; Kratasyuk VA; Nemtseva EV
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.