BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 27354702)

  • 1. AutoSite: an automated approach for pseudo-ligands prediction-from ligand-binding sites identification to predicting key ligand atoms.
    Ravindranath PA; Sanner MF
    Bioinformatics; 2016 Oct; 32(20):3142-3149. PubMed ID: 27354702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility.
    Ravindranath PA; Forli S; Goodsell DS; Olson AJ; Sanner MF
    PLoS Comput Biol; 2015 Dec; 11(12):e1004586. PubMed ID: 26629955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Definition and display of steric, hydrophobic, and hydrogen-bonding properties of ligand binding sites in proteins using Lee and Richards accessible surface: validation of a high-resolution graphical tool for drug design.
    Bohacek RS; McMartin C
    J Med Chem; 1992 May; 35(10):1671-84. PubMed ID: 1588550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An automated method for predicting the positions of hydrogen-bonding atoms in binding sites.
    Mills JE; Perkins TD; Dean PM
    J Comput Aided Mol Des; 1997 May; 11(3):229-42. PubMed ID: 9263850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-ligand interfaces are polarized: discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes.
    Raschka S; Wolf AJ; Bemister-Buffington J; Kuhn LA
    J Comput Aided Mol Des; 2018 Apr; 32(4):511-528. PubMed ID: 29435780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LigVoxel: inpainting binding pockets using 3D-convolutional neural networks.
    Skalic M; Varela-Rial A; Jiménez J; Martínez-Rosell G; De Fabritiis G
    Bioinformatics; 2019 Jan; 35(2):243-250. PubMed ID: 29982392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of protein-ligand binding affinity by hydrogen bond pairing.
    Chen D; Oezguen N; Urvil P; Ferguson C; Dann SM; Savidge TC
    Sci Adv; 2016 Mar; 2(3):e1501240. PubMed ID: 27051863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated prediction of ligand-binding sites in proteins.
    Harris R; Olson AJ; Goodsell DS
    Proteins; 2008 Mar; 70(4):1506-17. PubMed ID: 17910060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated site-directed drug design: the prediction and observation of ligand point positions at hydrogen-bonding regions on protein surfaces.
    Danziger DJ; Dean PM
    Proc R Soc Lond B Biol Sci; 1989 Mar; 236(1283):115-24. PubMed ID: 2565576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An electronic environment and contact direction sensitive scoring function for predicting affinities of protein-ligand complexes in Contour(®).
    Lindblom PR; Wu G; Liu Z; Jim KC; Baldwin JJ; Gregg RE; Claremon DA; Singh SB
    J Mol Graph Model; 2014 Sep; 53():118-127. PubMed ID: 25123650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic generation of bioinformatics tools for predicting protein-ligand binding sites.
    Komiyama Y; Banno M; Ueki K; Saad G; Shimizu K
    Bioinformatics; 2016 Mar; 32(6):901-7. PubMed ID: 26545824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-binding site prediction using ligand-interacting and binding site-enriched protein triangles.
    Xie ZR; Hwang MJ
    Bioinformatics; 2012 Jun; 28(12):1579-85. PubMed ID: 22495747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AutoMap: a tool for analyzing protein-ligand recognition using multiple ligand binding modes.
    Agostino M; Mancera RL; Ramsland PA; Yuriev E
    J Mol Graph Model; 2013 Mar; 40():80-90. PubMed ID: 23376613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites.
    Najmanovich R; Kurbatova N; Thornton J
    Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. aCSM: noise-free graph-based signatures to large-scale receptor-based ligand prediction.
    Pires DE; de Melo-Minardi RC; da Silveira CH; Campos FF; Meira W
    Bioinformatics; 2013 Apr; 29(7):855-61. PubMed ID: 23396119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognizing metal and acid radical ion-binding sites by integrating ab initio modeling with template-based transferals.
    Hu X; Dong Q; Yang J; Zhang Y
    Bioinformatics; 2016 Nov; 32(21):3260-3269. PubMed ID: 27378301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of structural water and CH···π interactions in HIV-1 protease and PTP1B complexes using a hydrogen bond prediction tool, HBPredicT.
    Yesudas JP; Sayyed FB; Suresh CH
    J Mol Model; 2011 Feb; 17(2):401-13. PubMed ID: 20490879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting small ligand binding sites in proteins using backbone structure.
    Bordner AJ
    Bioinformatics; 2008 Dec; 24(24):2865-71. PubMed ID: 18940825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MEDock: a web server for efficient prediction of ligand binding sites based on a novel optimization algorithm.
    Chang DT; Oyang YJ; Lin JH
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W233-8. PubMed ID: 15991337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding affinity prediction for protein-ligand complexes based on β contacts and B factor.
    Liu Q; Kwoh CK; Li J
    J Chem Inf Model; 2013 Nov; 53(11):3076-85. PubMed ID: 24191692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.