BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 27355193)

  • 1. Minireview: Epigenomic Plasticity and Vulnerability to EDC Exposures.
    Walker CL
    Mol Endocrinol; 2016 Aug; 30(8):848-55. PubMed ID: 27355193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reprogramming of the Epigenome by MLL1 Links Early-Life Environmental Exposures to Prostate Cancer Risk.
    Wang Q; Trevino LS; Wong RL; Medvedovic M; Chen J; Ho SM; Shen J; Foulds CE; Coarfa C; O'Malley BW; Shilatifard A; Walker CL
    Mol Endocrinol; 2016 Aug; 30(8):856-71. PubMed ID: 27219490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenome environment interactions accelerate epigenomic aging and unlock metabolically restricted epigenetic reprogramming in adulthood.
    Treviño LS; Dong J; Kaushal A; Katz TA; Jangid RK; Robertson MJ; Grimm SL; Ambati CSR; Putluri V; Cox AR; Kim KH; May TD; Gallo MR; Moore DD; Hartig SM; Foulds CE; Putluri N; Coarfa C; Walker CL
    Nat Commun; 2020 May; 11(1):2316. PubMed ID: 32385268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linking inter-individual variability to endocrine disruptors: insights for epigenetic inheritance.
    Latchney SE; Fields AM; Susiarjo M
    Mamm Genome; 2018 Feb; 29(1-2):141-152. PubMed ID: 29218402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Epigenetics in the Latent Effects of Early Life Exposure to Obesogenic Endocrine Disrupting Chemicals.
    Stel J; Legler J
    Endocrinology; 2015 Oct; 156(10):3466-72. PubMed ID: 26241072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenomic disruption: the effects of early developmental exposures.
    Bernal AJ; Jirtle RL
    Birth Defects Res A Clin Mol Teratol; 2010 Oct; 88(10):938-44. PubMed ID: 20568270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular pathways: environmental estrogens activate nongenomic signaling to developmentally reprogram the epigenome.
    Wong RL; Walker CL
    Clin Cancer Res; 2013 Jul; 19(14):3732-7. PubMed ID: 23549878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental epigenomics: Current approaches to assess epigenetic effects of endocrine disrupting compounds (EDC's) on human health.
    Tapia-Orozco N; Santiago-Toledo G; Barrón V; Espinosa-García AM; García-García JA; García-Arrazola R
    Environ Toxicol Pharmacol; 2017 Apr; 51():94-99. PubMed ID: 28215500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic impacts of endocrine disruptors in the brain.
    Walker DM; Gore AC
    Front Neuroendocrinol; 2017 Jan; 44():1-26. PubMed ID: 27663243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endocrine-disrupting chemicals and epigenetic reprogramming in developmental origin of uterine fibroids.
    Yang Q; Ali M; Bariani MV; Vafaei S; Al-Hendy A
    Sci Prog; 2023; 106(4):368504231215601. PubMed ID: 38189295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multigenerational and transgenerational effects of endocrine disrupting chemicals: A role for altered epigenetic regulation?
    Xin F; Susiarjo M; Bartolomei MS
    Semin Cell Dev Biol; 2015 Jul; 43():66-75. PubMed ID: 26026600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental exposure to endocrine disrupting chemicals alters the epigenome: Identification of reprogrammed targets.
    Prusinski L; Al-Hendy A; Yang Q
    Gynecol Obstet Res; 2016 Jul; 3(1):1-6. PubMed ID: 27478869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An epigenome-wide association study identifies multiple DNA methylation markers of exposure to endocrine disruptors.
    Lu X; Fraszczyk E; van der Meer TP; van Faassen M; Bloks VW; Kema IP; van Beek AP; Li S; Franke L; Westra HJ; ; Xu X; Huo X; Snieder H; Wolffenbuttel BHR; van Vliet-Ostaptchouk JV
    Environ Int; 2020 Nov; 144():106016. PubMed ID: 32916427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sexually Dimorphic Effects of Early-Life Exposures to Endocrine Disruptors: Sex-Specific Epigenetic Reprogramming as a Potential Mechanism.
    McCabe C; Anderson OS; Montrose L; Neier K; Dolinoy DC
    Curr Environ Health Rep; 2017 Dec; 4(4):426-438. PubMed ID: 28980159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding Epigenetic Effects of Endocrine Disrupting Chemicals: From Mechanisms to Novel Test Methods.
    Alavian-Ghavanini A; Rüegg J
    Basic Clin Pharmacol Toxicol; 2018 Jan; 122(1):38-45. PubMed ID: 28842957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic modifications associated with in utero exposure to endocrine disrupting chemicals BPA, DDT and Pb.
    Onuzulu CD; Rotimi OA; Rotimi SO
    Rev Environ Health; 2019 Dec; 34(4):309-325. PubMed ID: 31271561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of epigenetics in the reproductive toxicity of environmental endocrine disruptors.
    Shi Y; Qi W; Xu Q; Wang Z; Cao X; Zhou L; Ye L
    Environ Mol Mutagen; 2021 Jan; 62(1):78-88. PubMed ID: 33217042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of prenatal exposure to endocrine disruptors and toxic metals on the fetal epigenome.
    Bommarito PA; Martin E; Fry RC
    Epigenomics; 2017 Mar; 9(3):333-350. PubMed ID: 28234024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transgenerational neuroendocrine disruption of reproduction.
    Walker DM; Gore AC
    Nat Rev Endocrinol; 2011 Apr; 7(4):197-207. PubMed ID: 21263448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic screening in product safety assessment: are we there yet?
    Rasoulpour RJ; LeBaron MJ; Ellis-Hutchings RG; Klapacz J; Gollapudi BB
    Toxicol Mech Methods; 2011 May; 21(4):298-311. PubMed ID: 21495868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.