BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27355214)

  • 21. Zoonotic cutaneous leishmaniasis in central Tunisia: spatio temporal dynamics.
    Salah AB; Kamarianakis Y; Chlif S; Alaya NB; Prastacos P
    Int J Epidemiol; 2007 Oct; 36(5):991-1000. PubMed ID: 17591639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Spacial modeling of cutaneous leishmaniasis risk zones].
    Aparicio C; Bitencourt MD
    Rev Saude Publica; 2004 Aug; 38(4):511-6. PubMed ID: 15311290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial Distribution of Sand Fly Vectors and Eco-Epidemiology of Cutaneous Leishmaniasis Transmission in Colombia.
    Ferro C; López M; Fuya P; Lugo L; Cordovez JM; González C
    PLoS One; 2015; 10(10):e0139391. PubMed ID: 26431546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring recent spatial patterns of cutaneous leishmaniasis and their associations with climate in some countries of the Middle East using geographical information systems.
    Jaber SM; Ibbini JH; Hijjawi NS; Amdar NM; Huwail MJ; Al-Aboud K
    Geospat Health; 2013 Nov; 8(1):143-58. PubMed ID: 24258891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting geographic variation in cutaneous leishmaniasis, Colombia.
    King RJ; Campbell-Lendrum DH; Davies CR
    Emerg Infect Dis; 2004 Apr; 10(4):598-607. PubMed ID: 15200848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bayesian spatial modelling and the significance of agricultural land use to scrub typhus infection in Taiwan.
    Wardrop NA; Kuo CC; Wang HC; Clements AC; Lee PF; Atkinson PM
    Geospat Health; 2013 Nov; 8(1):229-39. PubMed ID: 24258898
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of climate variability in the occurrence of leishmaniasis in northeastern Colombia.
    Cardenas R; Sandoval CM; Rodríguez-Morales AJ; Franco-Paredes C
    Am J Trop Med Hyg; 2006 Aug; 75(2):273-7. PubMed ID: 16896132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatio-temporal visualisation of cutaneous leishmaniasis in an endemic, urban area in Iran.
    Firouraghi N; Mohammadi A; Hamer DH; Bergquist R; Mostafavi SM; Shamsoddini A; Raouf-Rahmati A; Fakhar M; Moghaddas E; Kiani B
    Acta Trop; 2022 Jan; 225():106181. PubMed ID: 34678259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial modeling of cutaneous leishmaniasis in Iranian army units during 2014-2017 using a hierarchical Bayesian method and the spatial scan statistic.
    Ayubi E; Barati M; Dabbagh Moghaddam A; Reza Khoshdel A
    Epidemiol Health; 2018; 40():e2018032. PubMed ID: 30056641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Geographic information system-based analysis of the spatial and spatio-temporal distribution of zoonotic cutaneous leishmaniasis in Golestan Province, north-east of Iran.
    Mollalo A; Alimohammadi A; Shirzadi MR; Malek MR
    Zoonoses Public Health; 2015 Feb; 62(1):18-28. PubMed ID: 24628913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicted altitudinal shifts and reduced spatial distribution of Leishmania infantum vector species under climate change scenarios in Colombia.
    González C; Paz A; Ferro C
    Acta Trop; 2014 Jan; 129():83-90. PubMed ID: 23988300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatio-temporal clustering of American Cutaneous Leishmaniasis in a rural municipality of Venezuela.
    Rodríguez EM; Díaz F; Pérez MV
    Epidemics; 2013 Mar; 5(1):11-9. PubMed ID: 23438427
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Species of Lutzomyia (Psychodidae, Phlebotominae) in endemic cutaneous and visceral leishmaniasis foci of the department of Santander, in the eastern range of the Colombian Andes].
    Sandoval CM; Gutiérrez R; Cárdenas R; Ferro C
    Biomedica; 2006 Oct; 26 Suppl 1():218-27. PubMed ID: 17361857
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic relationship between climate factors and the incidence of cutaneous leishmaniasis in Biskra Province in Algeria.
    Selmane S
    Ann Saudi Med; 2015; 35(6):445-9. PubMed ID: 26657228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparing different spatio-temporal modeling methods in dengue fever data analysis in Colombia during 2012-2015.
    Ye J; Moreno-Madriñán MJ
    Spat Spatiotemporal Epidemiol; 2020 Aug; 34():100360. PubMed ID: 32807397
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Remote sensing, land cover changes, and vector-borne diseases: use of high spatial resolution satellite imagery to map the risk of occurrence of cutaneous leishmaniasis in Ghardaïa, Algeria.
    Garni R; Tran A; Guis H; Baldet T; Benallal K; Boubidi S; Harrat Z
    Infect Genet Evol; 2014 Dec; 28():725-34. PubMed ID: 25305006
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial distribution of cutaneous leishmaniasis in the state of Paraná, Brazil.
    Melo HA; Rossoni DF; Teodoro U
    PLoS One; 2017; 12(9):e0185401. PubMed ID: 28938013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epidemiology of cutaneous leishmaniasis in central Amazonia: a comparison of sex-biased incidence among rural settlers and field biologists.
    Soares L; Abad-Franch F; Ferraz G
    Trop Med Int Health; 2014 Aug; 19(8):988-95. PubMed ID: 24862350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A newly emerged cutaneous leishmaniasis focus in central Iran.
    Nateghi Rostami M; Saghafipour A; Vesali E
    Int J Infect Dis; 2013 Dec; 17(12):e1198-206. PubMed ID: 24011629
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An analysis of the spatiotemporal distribution of American cutaneous leishmaniasis in counties located along road and railway corridors in the State of Maranhão, Brazil.
    Gonçalves Neto VS; Barros Filho AK; Santos AM; Prazeres MP; Bezerril AC; Fonseca AV; Rebêlo JM
    Rev Soc Bras Med Trop; 2013; 46(3):322-8. PubMed ID: 23856875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.