These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27355238)

  • 1. Plasmonic Heating in Au Nanowires at Low Temperatures: The Role of Thermal Boundary Resistance.
    Zolotavin P; Alabastri A; Nordlander P; Natelson D
    ACS Nano; 2016 Jul; 10(7):6972-9. PubMed ID: 27355238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoplasmonics: quantifying plasmonic heating in single nanowires.
    Herzog JB; Knight MW; Natelson D
    Nano Lett; 2014 Feb; 14(2):499-503. PubMed ID: 24382140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative study of the photothermal properties of metallic nanowire networks.
    Bell AP; Fairfield JA; McCarthy EK; Mills S; Boland JJ; Baffou G; McCloskey D
    ACS Nano; 2015 May; 9(5):5551-8. PubMed ID: 25938797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying Remote Heating from Propagating Surface Plasmon Polaritons.
    Evans CI; Zolotavin P; Alabastri A; Yang J; Nordlander P; Natelson D
    Nano Lett; 2017 Sep; 17(9):5646-5652. PubMed ID: 28796525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noble metal nanowires: from plasmon waveguides to passive and active devices.
    Lal S; Hafner JH; Halas NJ; Link S; Nordlander P
    Acc Chem Res; 2012 Nov; 45(11):1887-95. PubMed ID: 23102053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Localized Surface Plasmon Interactions in Gold by Silicon Nanowire for Enhanced Heating and Photocatalysis.
    Agarwal D; Aspetti CO; Cargnello M; Ren M; Yoo J; Murray CB; Agarwal R
    Nano Lett; 2017 Mar; 17(3):1839-1845. PubMed ID: 28166635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermometry of Plasmonic Heating by Inelastic Electron Tunneling Spectroscopy (IETS).
    Nachman N; Selzer Y
    Nano Lett; 2017 Sep; 17(9):5855-5861. PubMed ID: 28834435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative heat dissipation characteristics in current-carrying GaN nanowires probed by combining scanning thermal microscopy and spatially resolved Raman spectroscopy.
    Soudi A; Dawson RD; Gu Y
    ACS Nano; 2011 Jan; 5(1):255-62. PubMed ID: 21155591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and Temporal Nanoscale Plasmonic Heating Quantified by Thermoreflectance.
    Wang D; Koh YR; Kudyshev ZA; Maize K; Kildishev AV; Boltasseva A; Shalaev VM; Shakouri A
    Nano Lett; 2019 Jun; 19(6):3796-3803. PubMed ID: 31067061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC.
    Yue Y; Zhang J; Wang X
    Small; 2011 Dec; 7(23):3324-33. PubMed ID: 21997970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photothermoelectric Effects and Large Photovoltages in Plasmonic Au Nanowires with Nanogaps.
    Zolotavin P; Evans C; Natelson D
    J Phys Chem Lett; 2017 Apr; 8(8):1739-1744. PubMed ID: 28365996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncontact sub-10 nm temperature measurement in near-field laser heating.
    Yue Y; Chen X; Wang X
    ACS Nano; 2011 Jun; 5(6):4466-75. PubMed ID: 21557563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scattering force and heating effect in laser-induced plasmonic welding of silver nanowire junctions.
    Wan H; Gui C; Chen D; Miao J; Zhao Q; Luan S; Zhou S
    Appl Opt; 2020 Mar; 59(7):2186-2191. PubMed ID: 32225745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoplasmonic Semitransparent Nanohole Electrodes.
    Tordera D; Zhao D; Volkov AV; Crispin X; Jonsson MP
    Nano Lett; 2017 May; 17(5):3145-3151. PubMed ID: 28441500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local thermal elevation probing of metal nanostructures during laser illumination utilizing surface-enhanced Raman scattering from a single-walled carbon nanotube.
    Takase M; Nabika H; Hoshina S; Nara M; Komeda K; Shito R; Yasuda S; Murakoshi K
    Phys Chem Chem Phys; 2013 Mar; 15(12):4270-4. PubMed ID: 23416759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed-laser excitation.
    Huang J; Wang W; Murphy CJ; Cahill DG
    Proc Natl Acad Sci U S A; 2014 Jan; 111(3):906-11. PubMed ID: 24395798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic Nano-Oven by Concatenation of Multishell Photothermal Enhancement.
    Meng L; Yu R; Qiu M; García de Abajo FJ
    ACS Nano; 2017 Aug; 11(8):7915-7924. PubMed ID: 28727409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale Electromechanics To Measure Thermal Conductivity, Expansion, and Interfacial Losses.
    Mathew JP; Patel R; Borah A; Maliakkal CB; Abhilash TS; Deshmukh MM
    Nano Lett; 2015 Nov; 15(11):7621-6. PubMed ID: 26479952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A contrastive analysis of laser heating between the human and guinea pig cochlea by numerical simulations.
    Zhang K; Zhang Y; Li J; Wang Q
    Biomed Eng Online; 2016 May; 15(1):59. PubMed ID: 27216818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures.
    Najmaei S; Mlayah A; Arbouet A; Girard C; Léotin J; Lou J
    ACS Nano; 2014 Dec; 8(12):12682-9. PubMed ID: 25469686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.