BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 27355369)

  • 1. Modeling Nitrogen Losses in Conventional and Advanced Soil-Based Onsite Wastewater Treatment Systems under Current and Changing Climate Conditions.
    Morales I; Cooper J; Amador JA; Boving TB
    PLoS One; 2016; 11(6):e0158292. PubMed ID: 27355369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of water quality functions of conventional and advanced soil-based onsite wastewater treatment systems.
    Cooper JA; Loomis GW; Kalen DV; Amador JA
    J Environ Qual; 2015 May; 44(3):953-62. PubMed ID: 26024275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hell and High Water: Diminished Septic System Performance in Coastal Regions Due to Climate Change.
    Cooper JA; Loomis GW; Amador JA
    PLoS One; 2016; 11(9):e0162104. PubMed ID: 27583363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the hydrologic control of N cycle: Effect of water filled pore space on heterotrophic nitrification, denitrification and dissimilatory nitrate reduction to ammonium mechanisms in unsaturated soils.
    Mekala C; Nambi IM
    J Contam Hydrol; 2017 Jul; 202():11-22. PubMed ID: 28549725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen removal in Myriophyllum aquaticum wetland microcosms for swine wastewater treatment:
    Zhang S; Liu F; Xiao R; He Y; Wu J
    J Sci Food Agric; 2017 Jan; 97(2):505-511. PubMed ID: 27973728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the fate of sanitation-related nutrients in a shallow sandy aquifer below an urban slum area.
    Nyenje PM; Havik JC; Foppen JW; Muwanga A; Kulabako R
    J Contam Hydrol; 2014 Aug; 164():259-74. PubMed ID: 25016588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using nitrogen and oxygen isotopes to access sources and transformations of nitrogen in the Qinhe Basin, North China.
    Qin Y; Zhang D; Wang F
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):738-748. PubMed ID: 30414029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sources and transformations of anthropogenic nitrogen in the highly disturbed Huai River Basin, Eastern China.
    Ma P; Liu S; Yu Q; Li X; Han X
    Environ Sci Pollut Res Int; 2019 Apr; 26(11):11153-11169. PubMed ID: 30796665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the temporal distribution of water, ammonium-N, and nitrate-N in the root zone of wheat using HYDRUS-2D under conservation agriculture.
    Shafeeq PM; Aggarwal P; Krishnan P; Rai V; Pramanik P; Das TK
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):2197-2216. PubMed ID: 31773538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Sources and Biogeochemical Processes of Nitrate in the Laolongdong Karst Underground River Basin, Chongqing].
    Wang YY; Yang PH; Zhang JR
    Huan Jing Ke Xue; 2022 Oct; 43(10):4470-4479. PubMed ID: 36224133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate of effluent-borne contaminants beneath septic tank drainfields overlying a Karst aquifer.
    Katz BG; Griffin DW; McMahon PB; Harden HS; Wade E; Hicks RW; Chanton JP
    J Environ Qual; 2010; 39(4):1181-95. PubMed ID: 20830905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using dual isotopes to evaluate sources and transformations of nitrate in the West Lake watershed, eastern China.
    Jin Z; Qin X; Chen L; Jin M; Li F
    J Contam Hydrol; 2015; 177-178():64-75. PubMed ID: 25835546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating nitrate dynamics in a fine-textured soil affected by feedlot effluents.
    Veizaga EA; Rodríguez L; Ocampo CJ
    J Contam Hydrol; 2016 Oct; 193():21-34. PubMed ID: 27612180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model demonstrating the potential for coupled nitrification denitrification in soil aggregates.
    Kremen A; Bear J; Shavit U; Shaviv A
    Environ Sci Technol; 2005 Jun; 39(11):4180-8. PubMed ID: 15984798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate of nitrogen for subsurface drip dispersal of effluent from small wastewater systems.
    Beggs RA; Hills DJ; Tchobanoglous G; Hopmans JW
    J Contam Hydrol; 2011 Sep; 126(1-2):19-28. PubMed ID: 21708414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of sustainable electron donors for nitrate removal in different water media.
    Fowdar HS; Hatt BE; Breen P; Cook PL; Deletic A
    Water Res; 2015 Nov; 85():487-96. PubMed ID: 26379204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational modeling of wastewater land application treatment systems to determine strategies to improve carbon and nitrogen removal.
    Dong Y; Safferman SI; Pouyan Nejadhashemi A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(7):657-667. PubMed ID: 30821605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of model simulation based on BioWin and dynamic analyses on advanced nitrate nitrogen removal in deep bed denitrification filter.
    Ji X; Liu Y; Zhang J; Huang D; Zhou P; Zheng Z
    Bioprocess Biosyst Eng; 2019 Feb; 42(2):199-212. PubMed ID: 30353223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of artificial drainage system design on the nitrogen attenuation potential of gley soils: Evidence from hydrochemical and isotope studies under field-scale conditions.
    Clagnan E; Thornton SF; Rolfe SA; Tuohy P; Peyton D; Wells NS; Fenton O
    J Environ Manage; 2018 Jan; 206():1028-1038. PubMed ID: 30029337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coping with groundwater pollution in high-nitrate leaching areas: The efficacy of denitrification.
    Pan Y; She D; Ding J; Abulaiti A; Zhao J; Wang Y; Liu R; Wang F; Shan J; Xia Y
    Environ Res; 2024 Jun; 250():118484. PubMed ID: 38373544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.