These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 27355653)
1. Noninvasive Techniques for the Determination of Burn Severity in Real Time. Burmeister DM; Cerna C; Becerra SC; Sloan M; Wilmink G; Christy RJ J Burn Care Res; 2017; 38(1):e180-e191. PubMed ID: 27355653 [TBL] [Abstract][Full Text] [Related]
2. Examination of the Early Diagnostic Applicability of Active Dynamic Thermography for Burn Wound Depth Assessment and Concept Analysis. Prindeze NJ; Fathi P; Mino MJ; Mauskar NA; Travis TE; Paul DW; Moffatt LT; Shupp JW J Burn Care Res; 2015; 36(6):626-35. PubMed ID: 25412050 [TBL] [Abstract][Full Text] [Related]
3. Utility of spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) to non-invasively diagnose burn depth in a porcine model. Burmeister DM; Ponticorvo A; Yang B; Becerra SC; Choi B; Durkin AJ; Christy RJ Burns; 2015 Sep; 41(6):1242-52. PubMed ID: 26138371 [TBL] [Abstract][Full Text] [Related]
4. Forward-looking infrared imaging predicts ultimate burn depth in a porcine vertical injury progression model. Miccio J; Parikh S; Marinaro X; Prasad A; McClain S; Singer AJ; Clark RA Burns; 2016 Mar; 42(2):397-404. PubMed ID: 26775220 [TBL] [Abstract][Full Text] [Related]
5. Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI). Ponticorvo A; Burmeister DM; Rowland R; Baldado M; Kennedy GT; Saager R; Bernal N; Choi B; Durkin AJ Lasers Surg Med; 2017 Mar; 49(3):293-304. PubMed ID: 28220508 [TBL] [Abstract][Full Text] [Related]
6. Evaluating clinical observation versus Spatial Frequency Domain Imaging (SFDI), Laser Speckle Imaging (LSI) and thermal imaging for the assessment of burn depth. Ponticorvo A; Rowland R; Baldado M; Burmeister DM; Christy RJ; Bernal NP; Durkin AJ Burns; 2019 Mar; 45(2):450-460. PubMed ID: 30327232 [TBL] [Abstract][Full Text] [Related]
7. Prospective comparative evaluation study of Laser Doppler Imaging and thermal imaging in the assessment of burn depth. Wearn C; Lee KC; Hardwicke J; Allouni A; Bamford A; Nightingale P; Moiemen N Burns; 2018 Feb; 44(1):124-133. PubMed ID: 29032974 [TBL] [Abstract][Full Text] [Related]
8. Use of laser Doppler flowmetry for estimation of the depth of burns. Park DH; Hwang JW; Jang KS; Han DG; Ahn KY; Baik BS Plast Reconstr Surg; 1998 May; 101(6):1516-23. PubMed ID: 9583481 [TBL] [Abstract][Full Text] [Related]
9. Burn depth assessments by photoacoustic imaging and laser Doppler imaging. Ida T; Iwazaki H; Kawaguchi Y; Kawauchi S; Ohkura T; Iwaya K; Tsuda H; Saitoh D; Sato S; Iwai T Wound Repair Regen; 2016 Mar; 24(2):349-55. PubMed ID: 26487320 [TBL] [Abstract][Full Text] [Related]
10. The use of laser Doppler imaging as a predictor of burn depth and hypertrophic scar postburn injury. Stewart TL; Ball B; Schembri PJ; Hori K; Ding J; Shankowsky HA; Tredget EE; J Burn Care Res; 2012; 33(6):764-71. PubMed ID: 22955162 [TBL] [Abstract][Full Text] [Related]
11. [Meta-analysis on the diagnostic value of laser Doppler imaging for burn depth]. Huang Y; Qiu L; Mei AL; Li JX Zhonghua Shao Shang Za Zhi; 2017 May; 33(5):301-308. PubMed ID: 28651422 [No Abstract] [Full Text] [Related]
12. Comparison of Laser Doppler Imaging (LDI) and clinical assessment in differentiating between superficial and deep partial thickness burn wounds. Jan SN; Khan FA; Bashir MM; Nasir M; Ansari HH; Shami HB; Nazir U; Hanif A; Sohail M Burns; 2018 Mar; 44(2):405-413. PubMed ID: 28918904 [TBL] [Abstract][Full Text] [Related]
13. Donor site healing dynamics: molecular, histological, and noninvasive imaging assessment in a porcine model. Mauskar NA; Sood S; Travis TE; Matt SE; Mino MJ; Burnett MS; Moffatt LT; Fidler P; Epstein SE; Jordan MH; Shupp JW J Burn Care Res; 2013; 34(5):549-62. PubMed ID: 23511287 [TBL] [Abstract][Full Text] [Related]
14. Infrared Thermal Imaging Has the Potential to Reduce Unnecessary Surgery and Delays to Necessary Surgery in Burn Patients. Singer AJ; Relan P; Beto L; Jones-Koliski L; Sandoval S; Clark RA J Burn Care Res; 2016; 37(6):350-355. PubMed ID: 26720102 [TBL] [Abstract][Full Text] [Related]
15. Utilization of laser Doppler flowmetry and tissue spectrophotometry for burn depth assessment using a miniature swine model. Lotter O; Held M; Schiefer J; Werner O; Medved F; Schaller HE; Rahmanian-Schwarz A; Jaminet P; Rothenberger J Wound Repair Regen; 2015; 23(1):132-6. PubMed ID: 25487000 [TBL] [Abstract][Full Text] [Related]
16. Active Dynamic Thermography is a Sensitive Method for Distinguishing Burn Wound Conversion. Prindeze NJ; Hoffman HA; Ardanuy JG; Zhang J; Carney BC; Moffatt LT; Shupp JW J Burn Care Res; 2016; 37(6):e559-e568. PubMed ID: 26284633 [TBL] [Abstract][Full Text] [Related]
17. Noninvasive determination of burn depth in children by digital infrared thermal imaging. Medina-Preciado JD; Kolosovas-Machuca ES; Velez-Gomez E; Miranda-Altamirano A; González FJ J Biomed Opt; 2013 Jun; 18(6):061204. PubMed ID: 23111601 [TBL] [Abstract][Full Text] [Related]
18. Short-wave infrared light imaging measures tissue moisture and distinguishes superficial from deep burns. Mironov S; Hwang CD; Nemzek J; Li J; Ranganathan K; Butts JT; Cholok DJ; Dolgachev VA; Wang SC; Hemmila M; Cederna PS; Morris MD; Berenfeld O; Levi B Wound Repair Regen; 2020 Mar; 28(2):185-193. PubMed ID: 31675450 [TBL] [Abstract][Full Text] [Related]
19. Antecedent thermal injury worsens split-thickness skin graft quality: A clinically relevant porcine model of full-thickness burn, excision and grafting. Carlsson AH; Rose LF; Fletcher JL; Wu JC; Leung KP; Chan RK Burns; 2017 Feb; 43(1):223-231. PubMed ID: 27600980 [TBL] [Abstract][Full Text] [Related]