These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 27355653)
41. Static thermography revisited--an adjunct method for determining the depth of the burn injury. Renkielska A; Nowakowski A; Kaczmarek M; Dobke MK; Grudziński J; Karmolinski A; Stojek W Burns; 2005 Sep; 31(6):768-75. PubMed ID: 15990239 [TBL] [Abstract][Full Text] [Related]
42. Burn depth assessment using hyperspectral imaging in a prospective single center study. Schulz T; Marotz J; Seider S; Langer S; Leuschner S; Siemers F Burns; 2022 Aug; 48(5):1112-1119. PubMed ID: 34702635 [TBL] [Abstract][Full Text] [Related]
43. A systematic review on the quality of measurement techniques for the assessment of burn wound depth or healing potential. Jaspers MEH; van Haasterecht L; van Zuijlen PPM; Mokkink LB Burns; 2019 Mar; 45(2):261-281. PubMed ID: 29941159 [TBL] [Abstract][Full Text] [Related]
44. Laser Doppler imaging determines need for excision and grafting in advance of clinical judgment: a prospective blinded trial. Jeng JC; Bridgeman A; Shivnan L; Thornton PM; Alam H; Clarke TJ; Jablonski KA; Jordan MH Burns; 2003 Nov; 29(7):665-70. PubMed ID: 14556723 [TBL] [Abstract][Full Text] [Related]
45. Perfusion of burn wounds assessed by laser doppler imaging is related to burn depth and healing time. Kloppenberg FW; Beerthuizen GI; ten Duis HJ Burns; 2001 Jun; 27(4):359-63. PubMed ID: 11348744 [TBL] [Abstract][Full Text] [Related]
46. Evidence-based injury prediction data for the water temperature and duration of exposure for clinically relevant deep dermal scald injuries. Andrews CJ; Kimble RM; Kempf M; Cuttle L Wound Repair Regen; 2017 Sep; 25(5):792-804. PubMed ID: 28857337 [TBL] [Abstract][Full Text] [Related]
47. Analytical solution of the Pennes equation for burn-depth determination from infrared thermographs. Romero-Méndez R; Jiménez-Lozano JN; Sen M; González FJ Math Med Biol; 2010 Mar; 27(1):21-38. PubMed ID: 19617302 [TBL] [Abstract][Full Text] [Related]
49. Non-invasive optical imaging techniques for burn-injured tissue detection for debridement surgery. Heredia-Juesas J; Thatcher JE; Yang Lu ; Squiers JJ; King D; Wensheng Fan ; DiMaio JM; Martinez-Lorenzo JA Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2893-2896. PubMed ID: 28268919 [TBL] [Abstract][Full Text] [Related]
50. Optical coherence tomography provides an optical biopsy of burn wounds in children-a pilot study. Lindert J; Tafazzoli-Lari K; Tüshaus L; Larsen B; Bacia A; Bouteleux M; Adler T; Dalicho V; Vasileidos V; Kisch T; Stang F; Welzel J; Wünsch L J Biomed Opt; 2018 Oct; 23(10):1-6. PubMed ID: 30324791 [TBL] [Abstract][Full Text] [Related]
51. [Determining depth of burns using laser Doppler imaging]. Legemate CM; Hop MJ; Nieuwenhuis MK; Middelkoop E; van Baar ME; van der Vlies CH Ned Tijdschr Geneeskd; 2018; 162():D2374. PubMed ID: 29629853 [TBL] [Abstract][Full Text] [Related]
52. Use of FLIR ONE Smartphone Thermography in Burn Wound Assessment. Xue EY; Chandler LK; Viviano SL; Keith JD Ann Plast Surg; 2018 Apr; 80(4 Suppl 4):S236-S238. PubMed ID: 29489530 [TBL] [Abstract][Full Text] [Related]
53. The progression of burn depth in experimental burns: a histological and methodological study. Papp A; Kiraly K; Härmä M; Lahtinen T; Uusaro A; Alhava E Burns; 2004 Nov; 30(7):684-90. PubMed ID: 15475143 [TBL] [Abstract][Full Text] [Related]
54. Low-level laser therapy with a pulsed infrared laser accelerates second-degree burn healing in rat: a clinical and microbiologic study. Ezzati A; Bayat M; Khoshvaghti A Photomed Laser Surg; 2010 Oct; 28(5):603-11. PubMed ID: 20860542 [TBL] [Abstract][Full Text] [Related]
55. Reversal of capillary stasis and prevention of necrosis in burns. Zawacki BE Ann Surg; 1974 Jul; 180(1):98-102. PubMed ID: 4835963 [TBL] [Abstract][Full Text] [Related]
56. Role of autophagy and apoptosis in wound tissue of deep second-degree burn in rats. Xiao M; Li L; Li C; Zhang P; Hu Q; Ma L; Zhang H Acad Emerg Med; 2014 Apr; 21(4):383-91. PubMed ID: 24730400 [TBL] [Abstract][Full Text] [Related]
57. Thermal parametric imaging in the evaluation of skin burn depth. Rumiński J; Kaczmarek M; Renkielska A; Nowakowski A IEEE Trans Biomed Eng; 2007 Feb; 54(2):303-12. PubMed ID: 17278587 [TBL] [Abstract][Full Text] [Related]
58. Lack of agreement between gross visual and histological assessment of burn reepithelialization in a porcine burn model. Singer AJ; Hirth D; McClain SA; Clark RA J Burn Care Res; 2012; 33(2):286-90. PubMed ID: 21983645 [TBL] [Abstract][Full Text] [Related]
59. Indocyanine green dye angiography accurately predicts survival in the zone of ischemia in a burn comb model. Fourman MS; Phillips BT; Crawford L; McClain SA; Lin F; Thode HC; Dagum AB; Singer AJ; Clark RA Burns; 2014 Aug; 40(5):940-6. PubMed ID: 24231464 [TBL] [Abstract][Full Text] [Related]
60. A porcine deep dermal partial thickness burn model with hypertrophic scarring. Cuttle L; Kempf M; Phillips GE; Mill J; Hayes MT; Fraser JF; Wang XQ; Kimble RM Burns; 2006 Nov; 32(7):806-20. PubMed ID: 16884856 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]