These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 27355793)

  • 41. Absorption and Metabolism of Luteolin and Its Glycosides from the Extract of Chrysanthemum morifolium Flowers in Rats and Caco-2 Cells.
    Yasuda MT; Fujita K; Hosoya T; Imai S; Shimoi K
    J Agric Food Chem; 2015 Sep; 63(35):7693-9. PubMed ID: 25843231
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Use of Lactobacillus plantarum and glucose to control the fermentation of "Bella di Cerignola" table olives, a traditional variety of Apulian region (Southern Italy).
    Perricone M; Bevilacqua A; Corbo MR; Sinigaglia M
    J Food Sci; 2010 Sep; 75(7):M430-6. PubMed ID: 21535552
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Factors influencing phenolic compounds in table olives (Olea europaea).
    Charoenprasert S; Mitchell A
    J Agric Food Chem; 2012 Jul; 60(29):7081-95. PubMed ID: 22720792
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characteristics of oleuropeinolytic strains of Lactobacillus plantarum group and influence on phenolic compounds in table olives elaborated under reduced salt conditions.
    Kaltsa A; Papaliaga D; Papaioannou E; Kotzekidou P
    Food Microbiol; 2015 Jun; 48():58-62. PubMed ID: 25790992
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of Olive Metabolites on DNA Cleavage Mediated by Human Type II Topoisomerases.
    Vann KR; Sedgeman CA; Gopas J; Golan-Goldhirsh A; Osheroff N
    Biochemistry; 2015 Jul; 54(29):4531-41. PubMed ID: 26132160
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of In Vitro Digestion on the Content and Biological Activity of Polyphenols from
    Chen X; Xiong J; He L; Zhang Y; Li X; Zhang L; Wang F
    Molecules; 2018 Jul; 23(7):. PubMed ID: 30037047
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioaccessibility of polyphenols associated with dietary fiber and in vitro kinetics release of polyphenols in Mexican 'Ataulfo' mango (Mangifera indica L.) by-products.
    Blancas-Benitez FJ; Mercado-Mercado G; Quirós-Sauceda AE; Montalvo-González E; González-Aguilar GA; Sáyago-Ayerdi SG
    Food Funct; 2015 Mar; 6(3):859-68. PubMed ID: 25608953
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of lactic acid bacteria isolated from Italian Bella di Cerignola table olives: selection of potential multifunctional starter cultures.
    Bevilacqua A; Altieri C; Corbo MR; Sinigaglia M; Ouoba LI
    J Food Sci; 2010 Oct; 75(8):M536-44. PubMed ID: 21535510
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Industrial freezing effects on the content and bioaccessibility of spinach (Spinacia oleracea L.) polyphenols.
    Kamiloglu S
    J Sci Food Agric; 2020 Aug; 100(11):4190-4198. PubMed ID: 32378227
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bioactivity and phenolic composition from natural fermented table olives.
    Malheiro R; Mendes P; Fernandes F; Rodrigues N; Bento A; Pereira JA
    Food Funct; 2014 Dec; 5(12):3132-42. PubMed ID: 25266980
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vitro gastrointestinal digestion impact on stability, bioaccessibility and antioxidant activity of polyphenols from wild and commercial blackberries (Rubus spp.).
    Sánchez-Velázquez OA; Mulero M; Cuevas-Rodríguez EO; Mondor M; Arcand Y; Hernández-Álvarez AJ
    Food Funct; 2021 Aug; 12(16):7358-7378. PubMed ID: 34180938
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biophenols in table olives.
    Blekas G; Vassilakis C; Harizanis C; Tsimidou M; Boskou DG
    J Agric Food Chem; 2002 Jun; 50(13):3688-92. PubMed ID: 12059143
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vitro digestion with bile acids enhances the bioaccessibility of kale polyphenols.
    Yang I; Jayaprakasha GK; Patil B
    Food Funct; 2018 Feb; 9(2):1235-1244. PubMed ID: 29384542
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Safety assessment of aqueous olive pulp extract as an antioxidant or antimicrobial agent in foods.
    Soni MG; Burdock GA; Christian MS; Bitler CM; Crea R
    Food Chem Toxicol; 2006 Jul; 44(7):903-15. PubMed ID: 16530907
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of protective effect of different dietary fibers on polyphenolic profile stability of maqui berry (Aristotelia chilensis (Molina) Stuntz) during in vitro gastrointestinal digestion.
    Viuda-Martos M; Lucas-Gonzalez R; Ballester-Costa C; Pérez-Álvarez JA; Muñoz LA; Fernández-López J
    Food Funct; 2018 Jan; 9(1):573-584. PubMed ID: 29265144
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioaccessibility and transport of lentil hull polyphenols in vitro, and their bioavailability and metabolism in rats.
    Guo F; Peng L; Xiong H; Tsao R; Zhang H; Jiang L; Sun Y
    Food Res Int; 2023 May; 167():112634. PubMed ID: 37087206
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimization and validation of a rapid liquid chromatography method for determination of the main polyphenolic compounds in table olives and in olive paste.
    Cabrera-Bañegil M; Schaide T; Manzano R; Delgado-Adámez J; Durán-Merás I; Martín-Vertedor D
    Food Chem; 2017 Oct; 233():164-173. PubMed ID: 28530562
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simulated gastrointestinal digestion, intestinal permeation and plasma protein interaction of white, green, and black tea polyphenols.
    Tenore GC; Campiglia P; Giannetti D; Novellino E
    Food Chem; 2015 Feb; 169():320-6. PubMed ID: 25236233
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bioavailability of the phenolic compounds of the fruits (drupes) of Olea europaea (olives): impact on plasma antioxidant status in humans.
    Kountouri AM; Mylona A; Kaliora AC; Andrikopoulos NK
    Phytomedicine; 2007 Oct; 14(10):659-67. PubMed ID: 17870451
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Table olives from Portugal: phenolic compounds, antioxidant potential, and antimicrobial activity.
    Pereira JA; Pereira AP; Ferreira IC; Valentão P; Andrade PB; Seabra R; Estevinho L; Bento A
    J Agric Food Chem; 2006 Nov; 54(22):8425-31. PubMed ID: 17061816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.