BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 27355967)

  • 1. Improved Manufacturing Performance of Screen Printed Carbon Electrodes through Material Formulation.
    Jewell E; Philip B; Greenwood P
    Biosensors (Basel); 2016 Jun; 6(3):. PubMed ID: 27355967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.
    Tian P; Chen C; Hu J; Qi J; Wang Q; Chen JC; Cavanaugh J; Peng Y; Cheng MM
    Biomed Microdevices; 2017 Nov; 20(1):4. PubMed ID: 29170867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screen-Printed Nickel-Zinc Batteries: A Review of Additive Manufacturing and Evaluation Methods.
    Nazri MA; Lim LM; Samsudin Z; Ali MYT; Mansor I; Suhaimi MI; Meskon SR; Nordin AN
    3D Print Addit Manuf; 2021 Jun; 8(3):176-192. PubMed ID: 36654659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Properties of Screen-Printed Carbon Nano-Onion Electrodes.
    Cumba LR; Camisasca A; Giordani S; Forster RJ
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32858929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent progress of conductive 3D-printed electrodes based upon polymers/carbon nanomaterials using a fused deposition modelling (FDM) method as emerging electrochemical sensing devices.
    Omar MH; Razak KA; Ab Wahab MN; Hamzah HH
    RSC Adv; 2021 Apr; 11(27):16557-16571. PubMed ID: 35479129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanotube/polysulfone composite screen-printed electrochemical enzyme biosensors.
    Sánchez S; Pumera M; Cabruja E; Fàbregas E
    Analyst; 2007 Feb; 132(2):142-7. PubMed ID: 17260074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes.
    Cao X; Chen H; Gu X; Liu B; Wang W; Cao Y; Wu F; Zhou C
    ACS Nano; 2014 Dec; 8(12):12769-76. PubMed ID: 25497107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotube screen-printed electrochemical sensors.
    Wang J; Musameh M
    Analyst; 2004 Jan; 129(1):1-2. PubMed ID: 14737574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully-printed electrochemical sensors made with flexible screen-printed electrodes modified by roll-to-roll slot-die coating.
    Cagnani GR; Ibáñez-Redín G; Tirich B; Gonçalves D; Balogh DT; Oliveira ON
    Biosens Bioelectron; 2020 Oct; 165():112428. PubMed ID: 32729544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward the development of smart and low cost point-of-care biosensors based on screen printed electrodes.
    Ahmed MU; Hossain MM; Safavieh M; Wong YL; Abd Rahman I; Zourob M; Tamiya E
    Crit Rev Biotechnol; 2016; 36(3):495-505. PubMed ID: 25578718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis.
    Couto RA; Lima JL; Quinaz MB
    Talanta; 2016 Jan; 146():801-14. PubMed ID: 26695333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amperometric sensing of ascorbic acid using a disposable screen-printed electrode modified with electrografted o-aminophenol film.
    Nassef HM; Civit L; Fragoso A; O'Sullivan CK
    Analyst; 2008 Dec; 133(12):1736-41. PubMed ID: 19082077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thick-film textile-based amperometric sensors and biosensors.
    Yang YL; Chuang MC; Lou SL; Wang J
    Analyst; 2010 Jun; 135(6):1230-4. PubMed ID: 20498876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric cell-substrate impedance sensing with screen printed electrode structures.
    Brischwein M; Herrmann S; Vonau W; Berthold F; Grothe H; Motrescu ER; Wolf B
    Lab Chip; 2006 Jun; 6(6):819-22. PubMed ID: 16738736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Flexible and Low-Cost Tactile Sensor Produced by Screen Printing of Carbon Black/PVA Composite on Cellulose Paper.
    Sekertekin Y; Bozyel I; Gokcen D
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32455546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile characterization of thiol-functionalized printed metal electrodes on flexible substrates for cheap diagnostic applications.
    Ihalainen P; Majumdar H; Määttänen A; Wang S; Österbacka R; Peltonen J
    Biochim Biophys Acta; 2013 Sep; 1830(9):4391-7. PubMed ID: 23000571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of Nano Silver Paste and Applications in Transparent Electrodes via Electric-Field Driven Micro-Scale 3D Printing.
    Li H; Zhu X; Li Z; Yang J; Lan H
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31948105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent-Free Synthesis and Processing of Conductive Elastomer Composites for Green Dielectric Elastomer Transducers.
    Danner PM; Iacob M; Sasso G; Burda I; Rieger B; Nüesch F; Opris DM
    Macromol Rapid Commun; 2022 Mar; 43(6):e2100823. PubMed ID: 35084072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inkjet printing of graphene.
    Arapov K; Abbel R; de With G; Friedrich H
    Faraday Discuss; 2014; 173():323-36. PubMed ID: 25466243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.