BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27356066)

  • 1. Reconsidering Current Decorporation Strategies after Incorporation of Radionuclides.
    Rump A; Stricklin D; Lamkowski A; Eder S; Abend M; Port M
    Health Phys; 2016 Aug; 111(2):204-11. PubMed ID: 27356066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Medical management of victims contaminated with radionuclides after a "dirty bomb" attack.
    Rump A; Becker B; Eder S; Lamkowski A; Abend M; Port M
    Mil Med Res; 2018 Aug; 5(1):27. PubMed ID: 30086798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Impact of Time on Decorporation Efficacy After a "Dirty Bomb" Attack Studied by Simulation.
    Rump A; Stricklin D; Lamkowski A; Eder S; Abend M; Port M
    Drug Res (Stuttg); 2016 Nov; 66(11):607-613. PubMed ID: 27532439
    [No Abstract]   [Full Text] [Related]  

  • 4. Analysis of the antidote requirements and outcomes of different radionuclide decorporation strategies for a scenario of a "dirty bomb" attack.
    Rump A; Stricklin D; Lamkowski A; Eder S; Abend M; Port M
    Am J Disaster Med; 2017; 12(4):227-241. PubMed ID: 29468625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Decorporation agents for internal radioactive contamination].
    Ohmachi Y
    Yakugaku Zasshi; 2015; 135(4):557-63. PubMed ID: 25832835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Incorporation of Radionuclides After Wounding by a "Dirty Bomb": The Impact of Time for Decorporation Efficacy and a Model for Cases of Disseminated Fragmentation Wounds.
    Rump A; Stricklin D; Lamkowski A; Eder S; Abend M; Port M
    Adv Wound Care (New Rochelle); 2017 Jan; 6(1):1-9. PubMed ID: 28116223
    [No Abstract]   [Full Text] [Related]  

  • 7. MEDECOR--a medical decorporation tool to assist first responders, receivers, and medical reach-back personnel in triage, treatment, and risk assessment after internalization of radionuclides.
    Waller E; Wilkinson D
    Health Phys; 2010 Oct; 99(4):581-90. PubMed ID: 20838103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medical countermeasures against nuclear threats: radionuclide decorporation agents.
    Cassatt DR; Kaminski JM; Hatchett RJ; DiCarlo AL; Benjamin JM; Maidment BW
    Radiat Res; 2008 Oct; 170(4):540-8. PubMed ID: 19024661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From early prophylaxis to delayed treatment: Establishing the plutonium decorporation activity window of hydroxypyridinonate chelating agents.
    An DD; Kullgren B; Jarvis EE; Abergel RJ
    Chem Biol Interact; 2017 Apr; 267():80-88. PubMed ID: 27038878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decorporation of plutonium by pulmonary administration of Ca-DTPA dry powder: a study in rat after lung contamination with different plutonium forms.
    Sérandour AL; Tsapis N; Gervelas C; Grillon G; Fréchou M; Deverre JR; Bénech H; Fattal E; Fritsch P; Poncy JL
    Radiat Prot Dosimetry; 2007; 127(1-4):472-6. PubMed ID: 17562654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative decorporation efficacy of 3,4,3-LIHOPO, 4,4,4-LIHOPO and DTPA after contamination of rats with soluble forms of 238Pu and 233U.
    Ramounet-Le Gall B; Grillon G; Rateau G; Burgada R; Bailly T; Fritsch P
    Radiat Prot Dosimetry; 2003; 105(1-4):535-8. PubMed ID: 14527023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The CONRAD approach to biokinetic modeling of DTPA decorporation therapy.
    Breustedt B; Blanchardon E; Bérard P; Fritsch P; Giussani A; Lopez MA; Luciani A; Nosske D; Piechowski J; Schimmelpfeng J; Sérandour AL
    Health Phys; 2010 Oct; 99(4):547-52. PubMed ID: 20838097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel drug delivery systems for actinides (uranium and plutonium) decontamination agents.
    Fattal E; Tsapis N; Phan G
    Adv Drug Deliv Rev; 2015 Aug; 90():40-54. PubMed ID: 26144994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ustur Case 0846: Modeling Americium Biokinetics after Intensive Decorporation Therapy.
    Breustedt B; Avtandilashvili M; McComish SL; Tolmachev SY
    Health Phys; 2019 Aug; 117(2):168-178. PubMed ID: 30489383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of human contamination with plutonium and americium: would orally administered Ca- or Zn-DTPA be effective?
    Taylor DM; Hodgson SA; Stradling N
    Radiat Prot Dosimetry; 2007; 127(1-4):469-71. PubMed ID: 17556346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benefit-Cost Analysis of Radiocesium Decorporation by a Prussian Blue Treatment and Stockpiling.
    Rump A; Stricklin D; Lamkowski A; Eder S; Port M
    Drug Res (Stuttg); 2018 Feb; 68(2):89-99. PubMed ID: 29036734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparing for a "dirty bomb" attack: the optimum mix of medical countermeasure resources.
    Rump A; Ostheim P; Eder S; Hermann C; Abend M; Port M
    Mil Med Res; 2021 Jan; 8(1):3. PubMed ID: 33455578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Key topics for making decisions on decorporation terapies.
    Reis A; Sampaio C; Sousa W; Aguiar L; Bertelli L
    Radiat Prot Dosimetry; 2024 May; 200(7):707-714. PubMed ID: 38678315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local Dose Coefficients for Radionuclide Contamination in Wounds.
    Galipeau N; Sugarman SL; Waller E
    Health Phys; 2023 Sep; 125(3):159-174. PubMed ID: 37294949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inositol hexaphosphate: a potential chelating agent for uranium.
    Cebrian D; Tapia A; Real A; Morcillo MA
    Radiat Prot Dosimetry; 2007; 127(1-4):477-9. PubMed ID: 17627956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.