These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 27356162)
1. Scan MDCs for GPS-Based Gamma Radiation Surveys. Alecksen T; Whicker R Health Phys; 2016 Aug; 111(2 Suppl 2):S123-32. PubMed ID: 27356162 [TBL] [Abstract][Full Text] [Related]
2. Retrospective Detection Sensitivity for GPS-based Gamma Radiation Surveys. Alecksen T; Whicker R Health Phys; 2023 Jun; 124(6):451-461. PubMed ID: 36799760 [TBL] [Abstract][Full Text] [Related]
3. Scan MDCs for multiple radionuclides in Class 1 areas. Abelquist EW Health Phys; 2003 Jun; 84(6 Suppl):S141-6. PubMed ID: 12792407 [TBL] [Abstract][Full Text] [Related]
4. Monte Carlo determination of water concentration effect on gamma-ray detection efficiency in soil samples. Celik N; Cevik U Appl Radiat Isot; 2010 Jun; 68(6):1150-3. PubMed ID: 20133141 [TBL] [Abstract][Full Text] [Related]
5. Basic considerations for Monte Carlo calculations in soil. Wielopolski L; Song Z; Orion I; Hanson AL; Hendrey G Appl Radiat Isot; 2005 Jan; 62(1):97-107. PubMed ID: 15498691 [TBL] [Abstract][Full Text] [Related]
6. Monte Carlo calculations of the HPGe detector efficiency for radioactivity measurement of large volume environmental samples. Azbouche A; Belgaid M; Mazrou H J Environ Radioact; 2015 Aug; 146():119-24. PubMed ID: 25982445 [TBL] [Abstract][Full Text] [Related]
7. Study of natural radionuclide and absorbed gamma dose in Ukhimath area of Garhwal Himalaya, India. Rautela BS; Yadav M; Bourai AA; Joshi V; Gusain GS; Ramola RC Radiat Prot Dosimetry; 2012 Nov; 152(1-3):58-61. PubMed ID: 22908360 [TBL] [Abstract][Full Text] [Related]
8. Radiological site characterizations: gamma surveys, gamma/226Ra correlations, and related spatial analysis techniques. Whicker R; Cartier P; Cain J; Milmine K; Griffin M Health Phys; 2008 Nov; 95(5 Suppl):S180-9. PubMed ID: 18849712 [TBL] [Abstract][Full Text] [Related]
9. Application of Monte Carlo simulation to the prediction of extrapolation curves in the coincidence technique. Dias MS; Takeda MN; Koskinas MF Appl Radiat Isot; 2006; 64(10-11):1186-92. PubMed ID: 16556501 [TBL] [Abstract][Full Text] [Related]
10. Distribution of terrestrial gamma radiation dose rate in the eastern coastal area of Odisha, India. Gusain GS; Rautela BS; Sahoo SK; Ishikawa T; Prasad G; Omori Y; Sorimachi A; Tokonami S; Ramola RC Radiat Prot Dosimetry; 2012 Nov; 152(1-3):42-5. PubMed ID: 22874894 [TBL] [Abstract][Full Text] [Related]
11. Accuracy of Cloudshine Gamma Dose Calculations in the CAP-88 Dispersion Model. McNaughton MW; Gillis JM; Ruedig E; Whicker JJ; Fuehne DP Health Phys; 2017 Apr; 112(4):414-419. PubMed ID: 28234703 [TBL] [Abstract][Full Text] [Related]
12. Minimum detectable concentration as a function of gamma walkover survey technique. King DA; Altic N; Greer C Health Phys; 2012 Feb; 102 Suppl 1():S22-7. PubMed ID: 22249469 [TBL] [Abstract][Full Text] [Related]
13. Predicting instrument detection efficiency when scanning point and small area radiation sources. Hart K; Duffy W; Higley K; Marianno C; Moss C Health Phys; 2003 May; 84(5):616-25. PubMed ID: 12747481 [TBL] [Abstract][Full Text] [Related]
15. The effect of short-range spatial variability on soil sampling uncertainty. Van der Perk M; de Zorzi P; Barbizzi S; Belli M; Fajgelj A; Sansone U; Jeran Z; Jaćimović R Appl Radiat Isot; 2008 Nov; 66(11):1582-7. PubMed ID: 18513979 [TBL] [Abstract][Full Text] [Related]
16. Measurement of naturally occurring radionuclides in geothermal samples and assessment of radiological risks and radiation doses. Parmaksiz A Radiat Prot Dosimetry; 2013 Dec; 157(4):585-93. PubMed ID: 23847323 [TBL] [Abstract][Full Text] [Related]
17. Gamma-ray spectrometry of radon in water and the role of radon to representatively sample aquifers. Talha SA; Lindsay R; Newman RT; de Meijer RJ; Maleka PP; Hlatshwayo IN; Mlwilo NA; Mohanty AK Appl Radiat Isot; 2008 Nov; 66(11):1623-6. PubMed ID: 18515121 [TBL] [Abstract][Full Text] [Related]
18. Application of a Monte Carlo method to the uncertainty assessment in in situ gamma-ray spectrometry. Persson L; Boson J; Nylén T; Ramebäck H J Environ Radioact; 2018 Jul; 187():1-7. PubMed ID: 29459254 [TBL] [Abstract][Full Text] [Related]
19. Optimising in situ gamma measurements to identify the presence of radioactive particles in land areas. Rostron PD; Heathcote JA; Ramsey MH J Environ Radioact; 2014 Dec; 138():162-9. PubMed ID: 25233216 [TBL] [Abstract][Full Text] [Related]
20. Determination of marine gamma activity and study of the minimum detectable activity (MDA) in 4pi geometry based on Monte Carlo simulation. Bagatelas C; Tsabaris C; Kokkoris M; Papadopoulos CT; Vlastou R Environ Monit Assess; 2010 Jun; 165(1-4):159-68. PubMed ID: 19421884 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]