BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27356487)

  • 21. Interfacial Superassembly of Grape-Like MnO-Ni@C Frameworks for Superior Lithium Storage.
    Hou C; Wang J; Zhang W; Li J; Zhang R; Zhou J; Fan Y; Li D; Dang F; Liu J; Li Y; Liang K; Kong B
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13770-13780. PubMed ID: 32096974
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of Nickel Nanoparticles in High-Performance TiO
    Wang X; Zhao D; Wang C; Xia Y; Jiang W; Xia S; Yin S; Zuo X; Metwalli E; Xiao Y; Sun Z; Zhu J; Müller-Buschbaum P; Cheng YJ
    Chem Asian J; 2019 May; 14(9):1557-1569. PubMed ID: 30895740
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries.
    Xia Y; Xiao Z; Dou X; Huang H; Lu X; Yan R; Gan Y; Zhu W; Tu J; Zhang W; Tao X
    ACS Nano; 2013 Aug; 7(8):7083-92. PubMed ID: 23888901
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MnO Nanoparticles Supported by Carbonized Cotton Fiber Foil as a Free-Standing Anode for High-Performance Lithium Ion Batteries.
    Zheng Z; Cui D; Pei Y; Zhang F; Yuan L
    Chempluschem; 2019 Feb; 84(2):166-174. PubMed ID: 31950699
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MnO Nanoparticles Sandwiched within 3D Graphene-Based Hierarchical Architecture for Efficient Lithium Storage.
    Cheng F; Zhou X; Yang J; Sun A; Wang H; Tang J
    Inorg Chem; 2019 Mar; 58(5):3329-3337. PubMed ID: 30742419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MnO nanoparticle@mesoporous carbon composites grown on conducting substrates featuring high-performance lithium-ion battery, supercapacitor and sensor.
    Wang T; Peng Z; Wang Y; Tang J; Zheng G
    Sci Rep; 2013; 3():2693. PubMed ID: 24045767
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rational Design of Space-Confined Mn-Based Heterostructures with Synergistic Interfacial Charge Transport and Structural Integrity for Lithium Storage.
    Zhang X; He X; Yin S; Cai W; Wang Q; Wu H; Wu K; Zhang Y
    Inorg Chem; 2022 May; 61(21):8366-8378. PubMed ID: 35588477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal-Organic Framework-Derived Hierarchical MnO/Co with Oxygen Vacancies toward Elevated-Temperature Li-Ion Battery.
    Lin J; Zeng C; Lin X; Xu C; Xu X; Luo Y
    ACS Nano; 2021 Mar; 15(3):4594-4607. PubMed ID: 33606517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlled synthesis of mesoporous MnO/C networks by microwave irradiation and their enhanced lithium-storage properties.
    Luo W; Hu X; Sun Y; Huang Y
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):1997-2003. PubMed ID: 23432367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Embedding MnO@Mn
    Chu Y; Guo L; Xi B; Feng Z; Wu F; Lin Y; Liu J; Sun D; Feng J; Qian Y; Xiong S
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29271501
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Construction of N-doped carbon encapsulated Mn
    Liu X; Liu Y; Jin M; Xu C; Tian Y; Zhou M; Wang W; Li G; Hou Z; Chen L
    J Colloid Interface Sci; 2024 Jul; 665():752-763. PubMed ID: 38554465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ion batteries.
    Zhang K; Han P; Gu L; Zhang L; Liu Z; Kong Q; Zhang C; Dong S; Zhang Z; Yao J; Xu H; Cui G; Chen L
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):658-64. PubMed ID: 22211424
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MnO Conversion in Li-Ion Batteries: In Situ Studies and the Role of Mesostructuring.
    Butala MM; Danks KR; Lumley MA; Zhou S; Melot BC; Seshadri R
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6496-503. PubMed ID: 26881741
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of nanostructured MnO/Co/solid-electrolyte interphase ternary composites as a durable anode material for lithium-ion batteries.
    Dang F; Oaki Y; Kokubu T; Hosono E; Zhou H; Imai H
    Chem Asian J; 2013 Apr; 8(4):760-4. PubMed ID: 23401355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molten-Salt-Assisted Synthesis of Hierarchical Porous MnO@Biocarbon Composites as Promising Electrode Materials for Supercapacitors and Lithium-Ion Batteries.
    Zhang H; Zhang Z; Luo JD; Qi XT; Yu J; Cai JX; Yang ZY
    ChemSusChem; 2019 Jan; 12(1):283-290. PubMed ID: 30376219
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Encapsulation of MnO nanocrystals in electrospun carbon nanofibers as high-performance anode materials for lithium-ion batteries.
    Liu B; Hu X; Xu H; Luo W; Sun Y; Huang Y
    Sci Rep; 2014 Mar; 4():4229. PubMed ID: 24598639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fe3O4/Fe/carbon composite and its application as anode material for lithium-ion batteries.
    Zhao X; Xia D; Zheng K
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1350-6. PubMed ID: 22301516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life li-ion batteries.
    Jiang H; Hu Y; Guo S; Yan C; Lee PS; Li C
    ACS Nano; 2014 Jun; 8(6):6038-46. PubMed ID: 24842575
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries.
    Wang D; Yu Y; He H; Wang J; Zhou W; Abruña HD
    ACS Nano; 2015 Feb; 9(2):1775-81. PubMed ID: 25602513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hollow 0.3Li2MnO3·0.7LiNi(0.5)Mn(0.5)O2 microspheres as a high-performance cathode material for lithium-ion batteries.
    Jiang Y; Yang Z; Luo W; Hu X; Huang Y
    Phys Chem Chem Phys; 2013 Feb; 15(8):2954-60. PubMed ID: 23340597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.