BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 27356740)

  • 1. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter.
    Choudhury SR; Cui Y; Lubecka K; Stefanska B; Irudayaraj J
    Oncotarget; 2016 Jul; 7(29):46545-46556. PubMed ID: 27356740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted DNA demethylation of the
    Gallego-Bartolomé J; Gardiner J; Liu W; Papikian A; Ghoshal B; Kuo HY; Zhao JM; Segal DJ; Jacobsen SE
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):E2125-E2134. PubMed ID: 29444862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.
    Okada M; Kanamori M; Someya K; Nakatsukasa H; Yoshimura A
    Epigenetics Chromatin; 2017; 10():24. PubMed ID: 28503202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Fidelity CRISPR/Cas9-Based Gene-Specific Hydroxymethylation.
    Xu X; Zeisberg EM
    Methods Mol Biol; 2021; 2272():195-206. PubMed ID: 34009615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic Targeting of TET Activity for Targeted Demethylation Using CRISPR/Cas9.
    Nguyen TV; Lister R
    Methods Mol Biol; 2021; 2272():181-194. PubMed ID: 34009614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9-mediated demethylation of FOXP3-TSDR toward Treg-characteristic programming of Jurkat T cells.
    Wilk C; Effenberg L; Abberger H; Steenpass L; Hansen W; Zeschnigk M; Kirschning C; Buer J; Kehrmann J
    Cell Immunol; 2022 Jan; 371():104471. PubMed ID: 34954490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aberrant promoter methylation contributes to LRIG1 silencing in basal/triple-negative breast cancer.
    Umeh-Garcia M; O'Geen H; Simion C; Gephart MH; Segal DJ; Sweeney CA
    Br J Cancer; 2022 Aug; 127(3):436-448. PubMed ID: 35440669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antagonistic and synergistic epigenetic modulation using orthologous CRISPR/dCas9-based modular system.
    Josipović G; Tadić V; Klasić M; Zanki V; Bečeheli I; Chung F; Ghantous A; Keser T; Madunić J; Bošković M; Lauc G; Herceg Z; Vojta A; Zoldoš V
    Nucleic Acids Res; 2019 Oct; 47(18):9637-9657. PubMed ID: 31410472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Editing of DNA Methylation Using dCas9-Peptide Repeat and scFv-TET1 Catalytic Domain Fusions.
    Morita S; Horii T; Hatada I
    Methods Mol Biol; 2018; 1767():419-428. PubMed ID: 29524149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic inactivation of the CpG demethylase TET1 as a DNA methylation feedback loop in human cancers.
    Li L; Li C; Mao H; Du Z; Chan WY; Murray P; Luo B; Chan AT; Mok TS; Chan FK; Ambinder RF; Tao Q
    Sci Rep; 2016 May; 6():26591. PubMed ID: 27225590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions.
    Morita S; Noguchi H; Horii T; Nakabayashi K; Kimura M; Okamura K; Sakai A; Nakashima H; Hata K; Nakashima K; Hatada I
    Nat Biotechnol; 2016 Oct; 34(10):1060-1065. PubMed ID: 27571369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted TET oxidase activity through methyl-CpG-binding domain extensively suppresses cancer cell proliferation.
    Mizuguchi Y; Saiki Y; Horii A; Fukushige S
    Cancer Med; 2016 Sep; 5(9):2522-33. PubMed ID: 27457352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programmable targeted epigenetic editing using CRISPR system in Bombyx mori.
    Liu Y; Ma S; Chang J; Zhang T; Chen X; Liang Y; Xia Q
    Insect Biochem Mol Biol; 2019 Jul; 110():105-111. PubMed ID: 31022512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TET1 inhibits gastric cancer growth and metastasis by PTEN demethylation and re-expression.
    Pei YF; Tao R; Li JF; Su LP; Yu BQ; Wu XY; Yan M; Gu QL; Zhu ZG; Liu BY
    Oncotarget; 2016 May; 7(21):31322-35. PubMed ID: 27121319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic Upregulation of Target Genes by TET1 and VP64 in the dCas9-SunTag Platform.
    Morita S; Horii T; Kimura M; Hatada I
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32106616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling the functional role of DNA demethylation at specific promoters by targeted steric blockage of DNA methyltransferase with CRISPR/dCas9.
    Sapozhnikov DM; Szyf M
    Nat Commun; 2021 Sep; 12(1):5711. PubMed ID: 34588447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced CRISPR-based DNA demethylation by Casilio-ME-mediated RNA-guided coupling of methylcytosine oxidation and DNA repair pathways.
    Taghbalout A; Du M; Jillette N; Rosikiewicz W; Rath A; Heinen CD; Li S; Cheng AW
    Nat Commun; 2019 Sep; 10(1):4296. PubMed ID: 31541098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-mediated promoter de/methylation technologies for gene regulation.
    Sung CK; Yim H
    Arch Pharm Res; 2020 Jul; 43(7):705-713. PubMed ID: 32725389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mono-ADP-ribosylation of H3R117 traps 5mC hydroxylase TET1 to impair demethylation of tumor suppressor gene TFPI2.
    Li M; Tang Y; Li Q; Xiao M; Yang Y; Wang Y
    Oncogene; 2019 May; 38(18):3488-3503. PubMed ID: 30651599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/dCAS9-mediated DNA demethylation screen identifies functional epigenetic determinants of colorectal cancer.
    Tejedor JR; Peñarroya A; Gancedo-Verdejo J; Santamarina-Ojeda P; Pérez RF; López-Tamargo S; Díez-Borge A; Alba-Linares JJ; González-Del-Rey N; Urdinguio RG; Mangas C; Roberti A; López V; Morales-Ruiz T; Ariza RR; Roldán-Arjona T; Meijón M; Valledor L; Cañal MJ; Fernández-Martínez D; Fernández-Hevia M; Jiménez-Fonseca P; García-Flórez LJ; Fernández AF; Fraga MF
    Clin Epigenetics; 2023 Aug; 15(1):133. PubMed ID: 37612734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.