These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
395 related articles for article (PubMed ID: 27357506)
1. Host specificity in a diverse Neotropical tick community: an assessment using quantitative network analysis and host phylogeny. Esser HJ; Herre EA; Blüthgen N; Loaiza JR; Bermúdez SE; Jansen PA Parasit Vectors; 2016 Jun; 9(1):372. PubMed ID: 27357506 [TBL] [Abstract][Full Text] [Related]
2. Local host-tick coextinction in neotropical forest fragments. Esser HJ; Herre EA; Kays R; Liefting Y; Jansen PA Int J Parasitol; 2019 Mar; 49(3-4):225-233. PubMed ID: 30742810 [TBL] [Abstract][Full Text] [Related]
3. A community approach to the Neotropical ticks-hosts interactions. Estrada-Peña A; Nava S; Tarragona E; de la Fuente J; Guglielmone AA Sci Rep; 2020 Jun; 10(1):9269. PubMed ID: 32518281 [TBL] [Abstract][Full Text] [Related]
4. A meta-analysis of host specificity in Neotropical hard ticks (Acari: Ixodidae). Nava S; Guglielmone AA Bull Entomol Res; 2013 Apr; 103(2):216-24. PubMed ID: 22954015 [TBL] [Abstract][Full Text] [Related]
6. Analysis of large new South African dataset using two host-specificity indices shows generalism in both adult and larval ticks of mammals. Espinaze MP; Hellard E; Horak IG; Cumming GS Parasitology; 2016 Mar; 143(3):366-73. PubMed ID: 26690251 [TBL] [Abstract][Full Text] [Related]
7. Tick Microbiomes in Neotropical Forest Fragments Are Best Explained by Tick-Associated and Environmental Factors Rather than Host Blood Source. Kueneman JG; Esser HJ; Weiss SJ; Jansen PA; Foley JE Appl Environ Microbiol; 2021 Mar; 87(7):. PubMed ID: 33514519 [TBL] [Abstract][Full Text] [Related]
8. Host body size and the diversity of tick assemblages on Neotropical vertebrates. Esser HJ; Foley JE; Bongers F; Herre EA; Miller MJ; Prins HH; Jansen PA Int J Parasitol Parasites Wildl; 2016 Dec; 5(3):295-304. PubMed ID: 27812506 [TBL] [Abstract][Full Text] [Related]
9. Host specialization in ticks and transmission of tick-borne diseases: a review. McCoy KD; Léger E; Dietrich M Front Cell Infect Microbiol; 2013; 3():57. PubMed ID: 24109592 [TBL] [Abstract][Full Text] [Related]
10. Bats and ticks: host selection and seasonality of bat-specialist ticks in eastern Europe. Sándor AD; Corduneanu A; Péter Á; Mihalca AD; Barti L; Csősz I; Szőke K; Hornok S Parasit Vectors; 2019 Dec; 12(1):605. PubMed ID: 31881931 [TBL] [Abstract][Full Text] [Related]
11. Functional Redundancy and Ecological Innovation Shape the Circulation of Tick-Transmitted Pathogens. Estrada-Peña A; de la Fuente J; Cabezas-Cruz A Front Cell Infect Microbiol; 2017; 7():234. PubMed ID: 28620590 [TBL] [Abstract][Full Text] [Related]
12. Ticks as Soil-Dwelling Arthropods: An Intersection Between Disease and Soil Ecology. Burtis JC; Yavitt JB; Fahey TJ; Ostfeld RS J Med Entomol; 2019 Oct; 56(6):1555-1564. PubMed ID: 31318035 [TBL] [Abstract][Full Text] [Related]
13. Tick host specificity: An analysis based on host phylogeny and tick ecological features using Amblyomma triste and Amblyomma tigrinum immature stages. Colombo VC; Fasano AA; Beldomenico PM; Nava S Ticks Tick Borne Dis; 2018 May; 9(4):781-787. PubMed ID: 29525553 [TBL] [Abstract][Full Text] [Related]
14. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission. Bonnet SI; Binetruy F; Hernández-Jarguín AM; Duron O Front Cell Infect Microbiol; 2017; 7():236. PubMed ID: 28642842 [TBL] [Abstract][Full Text] [Related]
15. Low host specificity and lack of parasite avoidance by immature ticks in Brazilian birds. Fecchio A; Martins TF; Bell JA; De La Torre GM; Pinho JB; Weckstein JD; Tkach VV; Labruna MB; Dias RI Parasitol Res; 2020 Jul; 119(7):2039-2045. PubMed ID: 32377908 [TBL] [Abstract][Full Text] [Related]
16. The phylogenetic structure of a neotropical forest tree community. Kembel SW; Hubbell SP Ecology; 2006 Jul; 87(7 Suppl):S86-99. PubMed ID: 16922305 [TBL] [Abstract][Full Text] [Related]
17. [The coevolution of ixodid ticks and terrestrial vertebrates]. Balashov IuS Parazitologiia; 1989; 23(6):457-68. PubMed ID: 2694077 [TBL] [Abstract][Full Text] [Related]
18. Nested coevolutionary networks shape the ecological relationships of ticks, hosts, and the Lyme disease bacteria of the Borrelia burgdorferi (s.l.) complex. Estrada-Peña A; Sprong H; Cabezas-Cruz A; de la Fuente J; Ramo A; Coipan EC Parasit Vectors; 2016 Sep; 9(1):517. PubMed ID: 27662832 [TBL] [Abstract][Full Text] [Related]
19. A list of the 70 species of Australian ticks; diagnostic guides to and species accounts of Ixodes holocyclus (paralysis tick), Ixodes cornuatus (southern paralysis tick) and Rhipicephalus australis (Australian cattle tick); and consideration of the place of Australia in the evolution of ticks with comments on four controversial ideas. Barker SC; Walker AR; Campelo D Int J Parasitol; 2014 Oct; 44(12):941-53. PubMed ID: 25236960 [TBL] [Abstract][Full Text] [Related]
20. Interactions between tick and transmitted pathogens evolved to minimise competition through nested and coherent networks. Estrada-Peña A; de la Fuente J; Ostfeld RS; Cabezas-Cruz A Sci Rep; 2015 May; 5():10361. PubMed ID: 25993662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]