These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 27357913)
1. Leaf Metabolic, Genetic, and Morphophysiological Profiles of Cultivated and Wild Rocket Salad (Eruca and Diplotaxis Spp.). Taranto F; Francese G; Di Dato F; D'Alessandro A; Greco B; Onofaro Sanajà V; Pentangelo A; Mennella G; Tripodi P J Agric Food Chem; 2016 Jul; 64(29):5824-36. PubMed ID: 27357913 [TBL] [Abstract][Full Text] [Related]
2. Ontogenic profiling of glucosinolates, flavonoids, and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket), and Bunias orientalis (Turkish rocket). Bennett RN; Rosa EA; Mellon FA; Kroon PA J Agric Food Chem; 2006 May; 54(11):4005-15. PubMed ID: 16719527 [TBL] [Abstract][Full Text] [Related]
3. Naturally occurring glucosinolates in plant extracts of rocket salad (Eruca sativa L.) identified by liquid chromatography coupled with negative ion electrospray ionization and quadrupole ion-trap mass spectrometry. Cataldi TR; Rubino A; Lelario F; Bufo SA Rapid Commun Mass Spectrom; 2007; 21(14):2374-88. PubMed ID: 17590871 [TBL] [Abstract][Full Text] [Related]
4. Rocket salad (Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic content. Pasini F; Verardo V; Cerretani L; Caboni MF; D'Antuono LF J Sci Food Agric; 2011 Dec; 91(15):2858-64. PubMed ID: 21725983 [TBL] [Abstract][Full Text] [Related]
5. Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC-MS: highlighting the potential for improving nutritional value of rocket crops. Bell L; Oruna-Concha MJ; Wagstaff C Food Chem; 2015 Apr; 172():852-61. PubMed ID: 25442630 [TBL] [Abstract][Full Text] [Related]
6. Identification and quantification of glucosinolates in sprouts derived from seeds of wild Eruca sativa L. (salad rocket) and Diplotaxis tenuifolia L. (wild rocket) from diverse geographical locations. Bennett RN; Carvalho R; Mellon FA; Eagles J; Rosa EA J Agric Food Chem; 2007 Jan; 55(1):67-74. PubMed ID: 17199315 [TBL] [Abstract][Full Text] [Related]
7. Analysis of phytochemical composition and chemoprotective capacity of rocket (Eruca sativa and Diplotaxis tenuifolia) leafy salad following cultivation in different environments. Jin J; Koroleva OA; Gibson T; Swanston J; Magan J; Zhang Y; Rowland IR; Wagstaff C J Agric Food Chem; 2009 Jun; 57(12):5227-34. PubMed ID: 19489541 [TBL] [Abstract][Full Text] [Related]
8. Identification of the major glucosinolate (4-mercaptobutyl glucosinolate) in leaves of Eruca sativa L. (salad rocket). Bennett RN; Mellon FA; Botting NP; Eagles J; Rosa EA; Williamson G Phytochemistry; 2002 Sep; 61(1):25-30. PubMed ID: 12165298 [TBL] [Abstract][Full Text] [Related]
9. Variations in the most abundant types of glucosinolates found in the leaves of baby leaf rocket under typical commercial conditions. Hall MK; Jobling JJ; Rogers GS J Sci Food Agric; 2015 Feb; 95(3):552-9. PubMed ID: 24912775 [TBL] [Abstract][Full Text] [Related]
10. Glucosinolates in Diplotaxis and Eruca leaves: diversity, taxonomic relations and applied aspects. D'Antuono LF; Elementi S; Neri R Phytochemistry; 2008 Jan; 69(1):187-99. PubMed ID: 17669448 [TBL] [Abstract][Full Text] [Related]
11. Isolation and structural elucidation of 4-(beta-D-glucopyranosyldisulfanyl)butyl glucosinolate from leaves of rocket salad (Eruca sativa L.) and its antioxidative activity. Kim SJ; Jin S; Ishii G Biosci Biotechnol Biochem; 2004 Dec; 68(12):2444-50. PubMed ID: 15618613 [TBL] [Abstract][Full Text] [Related]
12. Glucosinolates, myrosinase hydrolysis products, and flavonols found in rocket (Eruca sativa and Diplotaxis tenuifolia). Bell L; Wagstaff C J Agric Food Chem; 2014 May; 62(20):4481-92. PubMed ID: 24773270 [TBL] [Abstract][Full Text] [Related]
13. Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds. Bell L; Methven L; Signore A; Oruna-Concha MJ; Wagstaff C Food Chem; 2017 Mar; 218():181-191. PubMed ID: 27719896 [TBL] [Abstract][Full Text] [Related]
14. Establishing the occurrence of major and minor glucosinolates in Brassicaceae by LC-ESI-hybrid linear ion-trap and Fourier-transform ion cyclotron resonance mass spectrometry. Lelario F; Bianco G; Bufo SA; Cataldi TR Phytochemistry; 2012 Jan; 73(1):74-83. PubMed ID: 22030302 [TBL] [Abstract][Full Text] [Related]
15. Structural elucidation of 4-(cystein-S-yl)butyl glucosinolate from the leaves of Eruca sativa. Kim SJ; Kawaharada C; Jin S; Hashimoto M; Ishii G; Yamauchi H Biosci Biotechnol Biochem; 2007 Jan; 71(1):114-21. PubMed ID: 17213676 [TBL] [Abstract][Full Text] [Related]
16. A comparative study of flavonoid compounds, vitamin C, and antioxidant properties of baby leaf Brassicaceae species. Martínez-Sánchez A; Gil-Izquierdo A; Gil MI; Ferreres F J Agric Food Chem; 2008 Apr; 56(7):2330-40. PubMed ID: 18321050 [TBL] [Abstract][Full Text] [Related]
17. Rapid and Cost-Effective Quantification of Glucosinolates and Total Phenolic Content in Rocket Leaves by Visible/Near-Infrared Spectroscopy. Toledo-Martín EM; Font R; Obregón-Cano S; De Haro-Bailón A; Villatoro-Pulido M; Del Río-Celestino M Molecules; 2017 May; 22(5):. PubMed ID: 28531129 [TBL] [Abstract][Full Text] [Related]