These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 27358168)

  • 1. Probing the minimal determinants of zinc binding with computational protein design.
    Guffy SL; Der BS; Kuhlman B
    Protein Eng Des Sel; 2016 Aug; 29(8):327-338. PubMed ID: 27358168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo design of buttressed loops for sculpting protein functions.
    Jiang H; Jude KM; Wu K; Fallas J; Ueda G; Brunette TJ; Hicks DR; Pyles H; Yang A; Carter L; Lamb M; Li X; Levine PM; Stewart L; Garcia KC; Baker D
    Nat Chem Biol; 2024 Aug; 20(8):974-980. PubMed ID: 38816644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the zinc binding site of human carbonic anhydrase II: structure of the His-94-->Cys apoenzyme in a new crystalline form.
    Alexander RS; Kiefer LL; Fierke CA; Christianson DW
    Biochemistry; 1993 Feb; 32(6):1510-8. PubMed ID: 8431430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site.
    Katz BA; Elrod K; Luong C; Rice MJ; Mackman RL; Sprengeler PA; Spencer J; Hataye J; Janc J; Link J; Litvak J; Rai R; Rice K; Sideris S; Verner E; Young W
    J Mol Biol; 2001 Apr; 307(5):1451-86. PubMed ID: 11292354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Design of Ligand Binding Proteins.
    Tinberg CE; Khare SD
    Methods Mol Biol; 2017; 1529():363-373. PubMed ID: 27914062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and structure of two new protein cages illustrate successes and ongoing challenges in protein engineering.
    Cannon KA; Park RU; Boyken SE; Nattermann U; Yi S; Baker D; King NP; Yeates TO
    Protein Sci; 2020 Apr; 29(4):919-929. PubMed ID: 31840320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of successful and failed protein interface designs highlights the challenges of designing buried hydrogen bonds.
    Stranges PB; Kuhlman B
    Protein Sci; 2013 Jan; 22(1):74-82. PubMed ID: 23139141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing hydrolytic zinc metalloenzymes.
    Zastrow ML; Pecoraro VL
    Biochemistry; 2014 Feb; 53(6):957-78. PubMed ID: 24506795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active site remodeling during the catalytic cycle in metal-dependent fructose-1,6-bisphosphate aldolases.
    Jacques B; Coinçon M; Sygusch J
    J Biol Chem; 2018 May; 293(20):7737-7753. PubMed ID: 29593097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering a zinc binding site into the de novo designed protein DS119 with a βαβ structure.
    Zhu C; Zhang C; Liang H; Lai L
    Protein Cell; 2011 Dec; 2(12):1006-13. PubMed ID: 22231358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural biology of zinc.
    Christianson DW
    Adv Protein Chem; 1991; 42():281-355. PubMed ID: 1793007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
    Lombardi A; Pirro F; Maglio O; Chino M; DeGrado WF
    Acc Chem Res; 2019 May; 52(5):1148-1159. PubMed ID: 30973707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of a zinc-activated variant of human carbonic anhydrase I, CA I Michigan 1: evidence for a second zinc binding site involving arginine coordination.
    Ferraroni M; Tilli S; Briganti F; Chegwidden WR; Supuran CT; Wiebauer KE; Tashian RE; Scozzafava A
    Biochemistry; 2002 May; 41(20):6237-44. PubMed ID: 12009884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-assisted redesign of a protein-zinc-binding site with femtomolar affinity.
    Ippolito JA; Baird TT; McGee SA; Christianson DW; Fierke CA
    Proc Natl Acad Sci U S A; 1995 May; 92(11):5017-21. PubMed ID: 7761440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general computational approach for repeat protein design.
    Parmeggiani F; Huang PS; Vorobiev S; Xiao R; Park K; Caprari S; Su M; Seetharaman J; Mao L; Janjua H; Montelione GT; Hunt J; Baker D
    J Mol Biol; 2015 Jan; 427(2):563-75. PubMed ID: 25451037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation and correction of Zn-Cys
    Touw WG; van Beusekom B; Evers JM; Vriend G; Joosten RP
    Acta Crystallogr D Struct Biol; 2016 Oct; 72(Pt 10):1110-1118. PubMed ID: 27710932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studying allosteric regulation in metal sensor proteins using computational methods.
    Chakravorty DK; Merz KM
    Adv Protein Chem Struct Biol; 2014; 96():181-218. PubMed ID: 25443958
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Korendovych IV; DeGrado WF
    Q Rev Biophys; 2020 Feb; 53():e3. PubMed ID: 32041676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZincExplorer: an accurate hybrid method to improve the prediction of zinc-binding sites from protein sequences.
    Chen Z; Wang Y; Zhai YF; Song J; Zhang Z
    Mol Biosyst; 2013 Sep; 9(9):2213-22. PubMed ID: 23861030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid Sampling of Hydrogen Bond Networks for Computational Protein Design.
    Maguire JB; Boyken SE; Baker D; Kuhlman B
    J Chem Theory Comput; 2018 May; 14(5):2751-2760. PubMed ID: 29652499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.