These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 27358197)

  • 41. A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans.
    Vatamaniuk OK; Bucher EA; Ward JT; Rea PA
    J Biol Chem; 2001 Jun; 276(24):20817-20. PubMed ID: 11313333
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adaptive Engineering of Phytochelatin-based Heavy Metal Tolerance.
    Cahoon RE; Lutke WK; Cameron JC; Chen S; Lee SG; Rivard RS; Rea PA; Jez JM
    J Biol Chem; 2015 Jul; 290(28):17321-30. PubMed ID: 26018077
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanisms of waterborne Cu toxicity to the pond snail Lymnaea stagnalis: physiology and Cu bioavailability.
    Ng TY; Pais NM; Wood CM
    Ecotoxicol Environ Saf; 2011 Sep; 74(6):1471-9. PubMed ID: 21783254
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tissue distribution and subcellular localization of trace metals in the pond snail Lymnaea stagnalis with special reference to the role of lysosomal granules in metal sequestration.
    Desouky MM
    Aquat Toxicol; 2006 May; 77(2):143-52. PubMed ID: 16413619
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A common highly conserved cadmium detoxification mechanism from bacteria to humans: heavy metal tolerance conferred by the ATP-binding cassette (ABC) transporter SpHMT1 requires glutathione but not metal-chelating phytochelatin peptides.
    Prévéral S; Gayet L; Moldes C; Hoffmann J; Mounicou S; Gruet A; Reynaud F; Lobinski R; Verbavatz JM; Vavasseur A; Forestier C
    J Biol Chem; 2009 Feb; 284(8):4936-43. PubMed ID: 19054771
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional characterisation of two phytochelatin synthases in rice (Oryza sativa cv. Milyang 117) that respond to cadmium stress.
    Park HC; Hwang JE; Jiang Y; Kim YJ; Kim SH; Nguyen XC; Kim CY; Chung WS
    Plant Biol (Stuttg); 2019 Sep; 21(5):854-861. PubMed ID: 30929297
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cadmium Compartmentalization in the Pulmonate Snail Lymnaea stagnalis: Improving Our Understanding of Exposure.
    Reátegui-Zirena EG; French AD; Klein DM; Salice CJ
    Arch Environ Contam Toxicol; 2017 May; 72(4):575-585. PubMed ID: 28470349
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phytochelatin synthases of the model legume Lotus japonicus. A small multigene family with differential response to cadmium and alternatively spliced variants.
    Ramos J; Clemente MR; Naya L; Loscos J; Pérez-Rontomé C; Sato S; Tabata S; Becana M
    Plant Physiol; 2007 Mar; 143(3):1110-8. PubMed ID: 17208961
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phytochelatins in the diatom Phaeodactylum tricornutum Bohlin: an evaluation of their use as biomarkers of metal exposure in marine waters.
    Morelli E; Fantozzi L
    Bull Environ Contam Toxicol; 2008 Sep; 81(3):236-41. PubMed ID: 18575794
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chloroplast targeting of phytochelatin synthase in Arabidopsis: effects on heavy metal tolerance and accumulation.
    Picault N; Cazalé AC; Beyly A; Cuiné S; Carrier P; Luu DT; Forestier C; Peltier G
    Biochimie; 2006 Nov; 88(11):1743-50. PubMed ID: 16766112
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced tolerance and accumulation of heavy metal ions by engineered Escherichia coli expressing Pyrus calleryana phytochelatin synthase.
    Li H; Cong Y; Lin J; Chang Y
    J Basic Microbiol; 2015 Mar; 55(3):398-405. PubMed ID: 25727053
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A pseudo-phytochelatin synthase in the ciliated protozoan Tetrahymena thermophila.
    Amaro F; Ruotolo R; Martín-González A; Faccini A; Ottonello S; Gutiérrez JC
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 May; 149(4):598-604. PubMed ID: 19168152
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Arsenic accumulation and tolerance in rootless macrophyte Najas indica are mediated through antioxidants, amino acids and phytochelatins.
    Tripathi RD; Singh R; Tripathi P; Dwivedi S; Chauhan R; Adhikari B; Trivedi PK
    Aquat Toxicol; 2014 Dec; 157():70-80. PubMed ID: 25456221
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular cloning and characterization of a phytochelatin synthase gene, PvPCS1, from Pteris vittata L.
    Dong R
    J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):527-33. PubMed ID: 15918023
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phytochelatin biosynthesis and function in heavy-metal detoxification.
    Cobbett CS
    Curr Opin Plant Biol; 2000 Jun; 3(3):211-6. PubMed ID: 10837262
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Response differences between Ectocarpus siliculosus populations to copper stress involve cellular exclusion and induction of the phytochelatin biosynthetic pathway.
    Roncarati F; Sáez CA; Greco M; Gledhill M; Bitonti MB; Brown MT
    Aquat Toxicol; 2015 Feb; 159():167-75. PubMed ID: 25546007
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Arabidopsis thaliana expresses a second functional phytochelatin synthase.
    Cazalé AC; Clemens S
    FEBS Lett; 2001 Oct; 507(2):215-9. PubMed ID: 11684101
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn.
    Gasic K; Korban SS
    Planta; 2007 Apr; 225(5):1277-85. PubMed ID: 17086401
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phytochelatins: peptides involved in heavy metal detoxification.
    Pal R; Rai JP
    Appl Biochem Biotechnol; 2010 Mar; 160(3):945-63. PubMed ID: 19224399
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Increased lead and cadmium tolerance of Typha angustifolia from Huaihe River is associated with enhanced phytochelatin synthesis and improved antioxidative capacity.
    Liu Y; Chen J; Lu S; Yang L; Qian J; Cao S
    Environ Technol; 2016 Nov; 37(21):2743-9. PubMed ID: 26959972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.