These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 27358362)

  • 1. Inverse approach to estimating larval dispersal reveals limited population connectivity along 700 km of wave-swept open coast.
    Hameed SO; White JW; Miller SH; Nickols KJ; Morgan SG
    Proc Biol Sci; 2016 Jun; 283(1833):. PubMed ID: 27358362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating larval connectivity with local demography reveals regional dynamics of a marine metapopulation.
    Johnson DW; Christie MR; Pusack TJ; Stallings CD; Hixon MA
    Ecology; 2018 Jun; 99(6):1419-1429. PubMed ID: 29856493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multidisciplinary analytical framework to delineate spawning areas and quantify larval dispersal in coastal fish.
    Legrand T; Di Franco A; Ser-Giacomi E; Caló A; Rossi V
    Mar Environ Res; 2019 Oct; 151():104761. PubMed ID: 31399203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersal and population connectivity are phenotype dependent in a marine metapopulation.
    Fobert EK; Treml EA; Swearer SE
    Proc Biol Sci; 2019 Aug; 286(1909):20191104. PubMed ID: 31455189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterns and persistence of larval retention and connectivity in a marine fish metapopulation.
    Saenz-Agudelo P; Jones GP; Thorrold SR; Planes S
    Mol Ecol; 2012 Oct; 21(19):4695-705. PubMed ID: 22891716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nearshore larval retention in a region of strong upwelling and recruitment limitation.
    Morgan SG; Fisher JL; Miller SH; McAfee ST; Largier JL
    Ecology; 2009 Dec; 90(12):3489-502. PubMed ID: 20120816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying the key biophysical drivers, connectivity outcomes, and metapopulation consequences of larval dispersal in the sea.
    Treml EA; Ford JR; Black KP; Swearer SE
    Mov Ecol; 2015; 3(1):17. PubMed ID: 26180636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consequences of variable larval dispersal pathways and resulting phenotypic mixtures to the dynamics of marine metapopulations.
    Shima JS; Noonburg EG; Swearer SE
    Biol Lett; 2015 Feb; 11(2):20140778. PubMed ID: 25673001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial connectivity in an adult-sedentary reef fish with extended pelagic larval phase.
    Antoni L; Saillant E
    Mol Ecol; 2017 Oct; 26(19):4955-4965. PubMed ID: 28746775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stretched to the limit; can a short pelagic larval duration connect adult populations of an Indo-Pacific diadromous fish (Kuhlia rupestris)?
    Feutry P; Vergnes A; Broderick D; Lambourdière J; Keith P; Ovenden JR
    Mol Ecol; 2013 Mar; 22(6):1518-30. PubMed ID: 23294379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the importance of demographic connectivity in a marine metapopulation.
    Carson HS; Cook GS; López-Duarte PC; Levin LA
    Ecology; 2011 Oct; 92(10):1972-84. PubMed ID: 22073788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Population connectivity shifts at high frequency within an open-coast marine protected area network.
    Cook GS; Parnell PE; Levin LA
    PLoS One; 2014; 9(7):e103654. PubMed ID: 25077486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local connections and the larval competency strongly influence marine metapopulation persistence.
    Cecino G; Treml EA
    Ecol Appl; 2021 Jun; 31(4):e02302. PubMed ID: 33565673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Across-shelf transport of bivalve larvae: can the interface between a coastal current and inshore waters act as an ecological barrier to larval dispersal?
    Tilburg CE; McCartney MA; Yund PO
    PLoS One; 2012; 7(11):e48960. PubMed ID: 23152830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using post-settlement demography to estimate larval survivorship: a coral reef fish example.
    Johnson DW; Christie MR; Stallings CD; Pusack TJ; Hixon MA
    Oecologia; 2015 Nov; 179(3):729-39. PubMed ID: 26093629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of upwelling on larval dispersal and productivity of gooseneck barnacle populations in the Cantabrian Sea: management implications.
    Rivera A; Weidberg N; Pardiñas AF; González-Gil R; García-Flórez L; Acuña JL
    PLoS One; 2013; 8(11):e78482. PubMed ID: 24236020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design.
    Baco AR; Etter RJ; Ribeiro PA; von der Heyden S; Beerli P; Kinlan BP
    Mol Ecol; 2016 Jul; 25(14):3276-98. PubMed ID: 27146215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Larval dispersal and marine population connectivity.
    Cowen RK; Sponaugle S
    Ann Rev Mar Sci; 2009; 1():443-66. PubMed ID: 21141044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-settlement dispersal: the neglected link in maintenance of soft-sediment biodiversity.
    Pilditch CA; Valanko S; Norkko J; Norkko A
    Biol Lett; 2015 Feb; 11(2):20140795. PubMed ID: 25652219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design.
    Green AL; Maypa AP; Almany GR; Rhodes KL; Weeks R; Abesamis RA; Gleason MG; Mumby PJ; White AT
    Biol Rev Camb Philos Soc; 2015 Nov; 90(4):1215-47. PubMed ID: 25423947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.