These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

681 related articles for article (PubMed ID: 27358455)

  • 21. Variation in rhodopsin kinase expression alters the dim flash response shut off and the light adaptation in rod photoreceptors.
    Sakurai K; Young JE; Kefalov VJ; Khani SC
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6793-800. PubMed ID: 21474765
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dephosphorylation during bleach and regeneration of visual pigment in carp rod and cone membranes.
    Yamaoka H; Tachibanaki S; Kawamura S
    J Biol Chem; 2015 Oct; 290(40):24381-90. PubMed ID: 26286749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bleaching of mouse rods: microspectrophotometry and suction-electrode recording.
    Nymark S; Frederiksen R; Woodruff ML; Cornwall MC; Fain GL
    J Physiol; 2012 May; 590(10):2353-64. PubMed ID: 22451436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Constitutive "light" adaptation in rods from G90D rhodopsin: a mechanism for human congenital nightblindness without rod cell loss.
    Sieving PA; Fowler ML; Bush RA; Machida S; Calvert PD; Green DG; Makino CL; McHenry CL
    J Neurosci; 2001 Aug; 21(15):5449-60. PubMed ID: 11466416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deactivation of phosphorylated and nonphosphorylated rhodopsin by arrestin splice variants.
    Burns ME; Mendez A; Chen CK; Almuete A; Quillinan N; Simon MI; Baylor DA; Chen J
    J Neurosci; 2006 Jan; 26(3):1036-44. PubMed ID: 16421323
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RGS expression rate-limits recovery of rod photoresponses.
    Krispel CM; Chen D; Melling N; Chen YJ; Martemyanov KA; Quillinan N; Arshavsky VY; Wensel TG; Chen CK; Burns ME
    Neuron; 2006 Aug; 51(4):409-16. PubMed ID: 16908407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Light-driven translocation of the protein phosphatase 2A complex regulates light/dark dephosphorylation of phosducin and rhodopsin.
    Brown BM; Carlson BL; Zhu X; Lolley RN; Craft CM
    Biochemistry; 2002 Nov; 41(46):13526-38. PubMed ID: 12427013
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deletion of GRK1 causes retina degeneration through a transducin-independent mechanism.
    Fan J; Sakurai K; Chen CK; Rohrer B; Wu BX; Yau KW; Kefalov V; Crouch RK
    J Neurosci; 2010 Feb; 30(7):2496-503. PubMed ID: 20164334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigating the Role of Rhodopsin
    Poria D; Kolesnikov AV; Lee TJ; Salom D; Palczewski K; Kefalov VJ
    eNeuro; 2023 Mar; 10(3):. PubMed ID: 36823167
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prolonged photoresponses in transgenic mouse rods lacking arrestin.
    Xu J; Dodd RL; Makino CL; Simon MI; Baylor DA; Chen J
    Nature; 1997 Oct; 389(6650):505-9. PubMed ID: 9333241
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rhodopsin phosphorylation: from terminating single photon responses to photoreceptor dark adaptation.
    Arshavsky VY
    Trends Neurosci; 2002 Mar; 25(3):124-6. PubMed ID: 11852136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of neurotrophin receptor TrkB in the maturation of rod photoreceptors and establishment of synaptic transmission to the inner retina.
    Rohrer B; Korenbrot JI; LaVail MM; Reichardt LF; Xu B
    J Neurosci; 1999 Oct; 19(20):8919-30. PubMed ID: 10516311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The electroretinogram of the rhodopsin knockout mouse.
    Toda K; Bush RA; Humphries P; Sieving PA
    Vis Neurosci; 1999; 16(2):391-8. PubMed ID: 10367972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of recoverin in rod photoreceptor light adaptation.
    Morshedian A; Woodruff ML; Fain GL
    J Physiol; 2018 Apr; 596(8):1513-1526. PubMed ID: 29435986
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of rhodopsin activity in vision.
    Baylor DA; Burns ME
    Eye (Lond); 1998; 12 ( Pt 3b)():521-5. PubMed ID: 9775212
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The frequency of isomerization-like 'dark' events in rhodopsin and porphyropsin rods of the bull-frog retina.
    Donner K; Firsov ML; Govardovskii VI
    J Physiol; 1990 Sep; 428():673-92. PubMed ID: 2231428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arrestin-1 expression level in rods: balancing functional performance and photoreceptor health.
    Song X; Vishnivetskiy SA; Seo J; Chen J; Gurevich EV; Gurevich VV
    Neuroscience; 2011 Feb; 174():37-49. PubMed ID: 21075174
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Availability of 11-cis retinal and opsins without chromophore as revealed by small bleaches of rhodopsin in excised albino mouse eyes.
    Ostroy SE; Roberts AE; Knapp-Miller J; Spisak JM
    Vision Res; 2003 Dec; 43(28):3069-73. PubMed ID: 14611943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Occupancy of the chromophore binding site of opsin activates visual transduction in rod photoreceptors.
    Kefalov VJ; Carter Cornwall M; Crouch RK
    J Gen Physiol; 1999 Mar; 113(3):491-503. PubMed ID: 10051522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphorylation of G protein-coupled receptor kinase 1 (GRK1) is regulated by light but independent of phototransduction in rod photoreceptors.
    Osawa S; Jo R; Xiong Y; Reidel B; Tserentsoodol N; Arshavsky VY; Iuvone PM; Weiss ER
    J Biol Chem; 2011 Jun; 286(23):20923-9. PubMed ID: 21504899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.