These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 27358460)

  • 1. Developmental Switch in Spike Timing-Dependent Plasticity and Cannabinoid-Dependent Reorganization of the Thalamocortical Projection in the Barrel Cortex.
    Itami C; Huang JY; Yamasaki M; Watanabe M; Lu HC; Kimura F
    J Neurosci; 2016 Jun; 36(26):7039-54. PubMed ID: 27358460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concurrently induced plasticity due to convergence of distinct forms of spike timing-dependent plasticity in the developing barrel cortex.
    Itami C; Kimura F
    Eur J Neurosci; 2016 Dec; 44(12):2984-2990. PubMed ID: 27726220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental switch in spike timing-dependent plasticity at layers 4-2/3 in the rodent barrel cortex.
    Itami C; Kimura F
    J Neurosci; 2012 Oct; 32(43):15000-11. PubMed ID: 23100422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hypothetical Model Concerning How Spike-Timing-Dependent Plasticity Contributes to Neural Circuit Formation and Initiation of the Critical Period in Barrel Cortex.
    Kimura F; Itami C
    J Neurosci; 2019 May; 39(20):3784-3791. PubMed ID: 30877173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.
    Sgritta M; Locatelli F; Soda T; Prestori F; D'Angelo EU
    J Neurosci; 2017 Mar; 37(11):2809-2823. PubMed ID: 28188217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presynaptic Spike Timing-Dependent Long-Term Depression in the Mouse Hippocampus.
    Andrade-Talavera Y; Duque-Feria P; Paulsen O; Rodríguez-Moreno A
    Cereb Cortex; 2016 Aug; 26(8):3637-3654. PubMed ID: 27282393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double dissociation of spike timing-dependent potentiation and depression by subunit-preferring NMDA receptor antagonists in mouse barrel cortex.
    Banerjee A; Meredith RM; Rodríguez-Moreno A; Mierau SB; Auberson YP; Paulsen O
    Cereb Cortex; 2009 Dec; 19(12):2959-69. PubMed ID: 19363149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endocannabinoid-dependent formation of columnar axonal projection in the mouse cerebral cortex.
    Itami C; Uesaka N; Huang JY; Lu HC; Sakimura K; Kano M; Kimura F
    Proc Natl Acad Sci U S A; 2022 Sep; 119(37):e2122700119. PubMed ID: 36067295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. mGluR5 Exerts Cell-Autonomous Influences on the Functional and Anatomical Development of Layer IV Cortical Neurons in the Mouse Primary Somatosensory Cortex.
    Ballester-Rosado CJ; Sun H; Huang JY; Lu HC
    J Neurosci; 2016 Aug; 36(34):8802-14. PubMed ID: 27559164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosensory cortex: a study of normal and monoamine oxidase a knock-out mice.
    Rebsam A; Seif I; Gaspar P
    J Neurosci; 2002 Oct; 22(19):8541-52. PubMed ID: 12351728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lesion-induced thalamocortical axonal plasticity in the S1 cortex is independent of NMDA receptor function in excitatory cortical neurons.
    Datwani A; Iwasato T; Itohara S; Erzurumlu RS
    J Neurosci; 2002 Nov; 22(21):9171-5. PubMed ID: 12417641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex.
    Bender VA; Bender KJ; Brasier DJ; Feldman DE
    J Neurosci; 2006 Apr; 26(16):4166-77. PubMed ID: 16624937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spike-timing-dependent plasticity of neocortical excitatory synapses on inhibitory interneurons depends on target cell type.
    Lu JT; Li CY; Zhao JP; Poo MM; Zhang XH
    J Neurosci; 2007 Sep; 27(36):9711-20. PubMed ID: 17804631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term depression at thalamocortical synapses in developing rat somatosensory cortex.
    Feldman DE; Nicoll RA; Malenka RC; Isaac JT
    Neuron; 1998 Aug; 21(2):347-57. PubMed ID: 9728916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endocannabinoids mediate bidirectional striatal spike-timing-dependent plasticity.
    Cui Y; Paillé V; Xu H; Genet S; Delord B; Fino E; Berry H; Venance L
    J Physiol; 2015 Jul; 593(13):2833-49. PubMed ID: 25873197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic plasticity at thalamocortical synapses in developing rat somatosensory cortex: LTP, LTD, and silent synapses.
    Feldman DE; Nicoll RA; Malenka RC
    J Neurobiol; 1999 Oct; 41(1):92-101. PubMed ID: 10504196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early gamma oscillations.
    Khazipov R; Minlebaev M; Valeeva G
    Neuroscience; 2013 Oct; 250():240-52. PubMed ID: 23872391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine-enabled anti-Hebbian timing-dependent plasticity in prefrontal circuitry.
    Ruan H; Saur T; Yao WD
    Front Neural Circuits; 2014; 8():38. PubMed ID: 24795571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices.
    Fino E; Deniau JM; Venance L
    J Physiol; 2008 Jan; 586(1):265-82. PubMed ID: 17974593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms and significance of spike-timing dependent plasticity.
    Karmarkar UR; Najarian MT; Buonomano DV
    Biol Cybern; 2002 Dec; 87(5-6):373-82. PubMed ID: 12461627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.