BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 27358470)

  • 1. Bioenergetic and volume regulatory effects of mitoKATP channel modulators protect against hypoxia-reoxygenation-induced mitochondrial dysfunction.
    Onukwufor JO; Stevens D; Kamunde C
    J Exp Biol; 2016 Sep; 219(Pt 17):2743-51. PubMed ID: 27358470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lack of manifestations of diazoxide/5-hydroxydecanoate-sensitive KATP channel in rat brain nonsynaptosomal mitochondria.
    Brustovetsky T; Shalbuyeva N; Brustovetsky N
    J Physiol; 2005 Oct; 568(Pt 1):47-59. PubMed ID: 16051627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Closure of mitochondrial potassium channels favors opening of the Tl(+)-induced permeability transition pore in Ca(2+)-loaded rat liver mitochondria.
    Korotkov SM; Brailovskaya IV; Shumakov AR; Emelyanova LV
    J Bioenerg Biomembr; 2015 Jun; 47(3):243-54. PubMed ID: 25869491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of mitochondrial ATP-sensitive potassium channels delays ischemia-induced cellular uncoupling in rat heart.
    Shen YL; Chen YY; Wu XD; Bruce IC; Xia Q
    Acta Pharmacol Sin; 2004 Jan; 25(1):22-8. PubMed ID: 14704118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diazoxide-induced respiratory inhibition - a putative mitochondrial K(ATP) channel independent mechanism of pharmacological preconditioning.
    Minners J; Lacerda L; Yellon DM; Opie LH; McLeod CJ; Sack MN
    Mol Cell Biochem; 2007 Jan; 294(1-2):11-8. PubMed ID: 17136444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation.
    Ozcan C; Bienengraeber M; Dzeja PP; Terzic A
    Am J Physiol Heart Circ Physiol; 2002 Feb; 282(2):H531-9. PubMed ID: 11788400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. mitoKATP channel activation in the postanoxic developing heart protects E-C coupling via NO-, ROS-, and PKC-dependent pathways.
    Sarre A; Lange N; Kucera P; Raddatz E
    Am J Physiol Heart Circ Physiol; 2005 Apr; 288(4):H1611-9. PubMed ID: 15550517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix volume measurements challenge the existence of diazoxide/glibencamide-sensitive KATP channels in rat mitochondria.
    Das M; Parker JE; Halestrap AP
    J Physiol; 2003 Mar; 547(Pt 3):893-902. PubMed ID: 12562892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of mitochondrial KATP channel on voltage-gated K+ channel in 24 hour-hypoxic human pulmonary artery smooth muscle cells.
    Wang T; Zhang ZX; Xu YJ
    Chin Med J (Engl); 2005 Jan; 118(1):12-9. PubMed ID: 15642220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MitoKATP-channel opener protects against neuronal death in rat venous ischemia.
    Nakagawa I; Alessandri B; Heimann A; Kempski O
    Neurosurgery; 2005 Aug; 57(2):334-40; discussion 334-40. PubMed ID: 16094164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Regulation of rat airway smooth muscle cell proliferation by mitochondrial ATP-sensitive K(+) channel in asthmic rats.].
    Zhao JP; Gao M; Ye YJ; Hu WH; Zhou ZG; Hu HL
    Sheng Li Xue Bao; 2009 Feb; 61(1):65-71. PubMed ID: 19224056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diazoxide prevents reactive oxygen species and mitochondrial damage, leading to anti-hypertrophic effects.
    Lucas AM; Caldas FR; da Silva AP; Ventura MM; Leite IM; Filgueiras AB; Silva CG; Kowaltowski AJ; Facundo HT
    Chem Biol Interact; 2017 Jan; 261():50-55. PubMed ID: 27867086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of mitochondrial K(ATP) modulators on cardioprotection induced by chronic high altitude hypoxia in rats.
    Neckár J; Szárszoi O; Koten L; Papousek F; Ost'ádal B; Grover GJ; Kolár F
    Cardiovasc Res; 2002 Aug; 55(3):567-75. PubMed ID: 12160954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria.
    Busija DW; Katakam P; Rajapakse NC; Kis B; Grover G; Domoki F; Bari F
    Brain Res Bull; 2005 Jul; 66(2):85-90. PubMed ID: 15982523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diazoxide affects mitochondrial bioenergetics by the opening of mKATP channel on submicromolar scale.
    Akopova O; Kolchinskaya L; Nosar V; Mankovska I; Sagach V
    BMC Mol Cell Biol; 2020 Apr; 21(1):31. PubMed ID: 32306897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective pharmacotherapy against oxidative injury: alternative utility of an ATP-sensitive potassium channel opener.
    Ozcan C; Terzic A; Bienengraeber M
    J Cardiovasc Pharmacol; 2007 Oct; 50(4):411-8. PubMed ID: 18049309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variable effects of the mitoK(ATP) channel modulators diazoxide and 5-HD in ATP-depleted renal epithelial cells.
    Nilakantan V; Liang H; Mortensen J; Taylor E; Johnson CP
    Mol Cell Biochem; 2010 Feb; 335(1-2):211-22. PubMed ID: 19784759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of mitochondrial ATP-dependent K+ channels by protein kinase C.
    Sato T; O'Rourke B; Marbán E
    Circ Res; 1998 Jul; 83(1):110-4. PubMed ID: 9670924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-Wide Expression Profiling of Anoxia/Reoxygenation in Rat Cardiomyocytes Uncovers the Role of MitoKATP in Energy Homeostasis.
    Cao S; Liu Y; Sun W; Zhao L; Zhang L; Liu X; Yu T
    Oxid Med Cell Longev; 2015; 2015():756576. PubMed ID: 26171116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial K(ATP) channel as an end effector of cardioprotection during late preconditioning: triggering role of nitric oxide.
    Wang Y; Kudo M; Xu M; Ayub A; Ashraf M
    J Mol Cell Cardiol; 2001 Nov; 33(11):2037-46. PubMed ID: 11708847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.