These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27359048)

  • 1. Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca(2+) Homeostasis, and Synaptic Transmission in Primary Cortical Neurons.
    Bramini M; Sacchetti S; Armirotti A; Rocchi A; Vázquez E; León Castellanos V; Bandiera T; Cesca F; Benfenati F
    ACS Nano; 2016 Jul; 10(7):7154-71. PubMed ID: 27359048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene Oxide Upregulates the Homeostatic Functions of Primary Astrocytes and Modulates Astrocyte-to-Neuron Communication.
    Chiacchiaretta M; Bramini M; Rocchi A; Armirotti A; Giordano E; Vázquez E; Bandiera T; Ferroni S; Cesca F; Benfenati F
    Nano Lett; 2018 Sep; 18(9):5827-5838. PubMed ID: 30088941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Increase in Membrane Cholesterol by Graphene Oxide Disrupts Calcium Homeostasis in Primary Astrocytes.
    Bramini M; Chiacchiaretta M; Armirotti A; Rocchi A; Kale DD; Martin C; Vázquez E; Bandiera T; Ferroni S; Cesca F; Benfenati F
    Small; 2019 Apr; 15(15):e1900147. PubMed ID: 30891923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogenated Graphene Improves Neuronal Network Maturation and Excitatory Transmission.
    Moschetta M; Lee JY; Rodrigues J; Podestà A; Varvicchio O; Son J; Lee Y; Kim K; Lee GH; Benfenati F; Bramini M; Capasso A
    Adv Biol (Weinh); 2021 Jan; 5(1):e2000177. PubMed ID: 33724729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene Oxide Flakes Tune Excitatory Neurotransmission in Vivo by Targeting Hippocampal Synapses.
    Rauti R; Medelin M; Newman L; Vranic S; Reina G; Bianco A; Prato M; Kostarelos K; Ballerini L
    Nano Lett; 2019 May; 19(5):2858-2870. PubMed ID: 30983361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental refinement of synaptic transmission on micropatterned single layer graphene.
    Keshavan S; Naskar S; Diaspro A; Cancedda L; Dante S
    Acta Biomater; 2018 Jan; 65():363-375. PubMed ID: 29122711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility of pristine graphene for neuronal interface.
    Sahni D; Jea A; Mata JA; Marcano DC; Sivaganesan A; Berlin JM; Tatsui CE; Sun Z; Luerssen TG; Meng S; Kent TA; Tour JM
    J Neurosurg Pediatr; 2013 May; 11(5):575-83. PubMed ID: 23473006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of surface charges of graphene oxide on neuronal outgrowth and branching.
    Tu Q; Pang L; Chen Y; Zhang Y; Zhang R; Lu B; Wang J
    Analyst; 2014 Jan; 139(1):105-15. PubMed ID: 24162459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene Oxide Nanosheets Reshape Synaptic Function in Cultured Brain Networks.
    Rauti R; Lozano N; León V; Scaini D; Musto M; Rago I; Ulloa Severino FP; Fabbro A; Casalis L; Vázquez E; Kostarelos K; Prato M; Ballerini L
    ACS Nano; 2016 Apr; 10(4):4459-71. PubMed ID: 27030936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene oxide nanosheets modulate spinal glutamatergic transmission and modify locomotor behaviour in an in vivo zebrafish model.
    Cellot G; Vranic S; Shin Y; Worsley R; Rodrigues AF; Bussy C; Casiraghi C; Kostarelos K; McDearmid JR
    Nanoscale Horiz; 2020 Aug; 5(8):1250-1263. PubMed ID: 32558850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quercetin-mediated synthesis of graphene oxide-silver nanoparticle nanocomposites: a suitable alternative nanotherapy for neuroblastoma.
    Yuan YG; Wang YH; Xing HH; Gurunathan S
    Int J Nanomedicine; 2017; 12():5819-5839. PubMed ID: 28860751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal Free Graphene Oxide (GO) Nanosheets and Pristine-Single Wall Carbon Nanotubes (p-SWCNTs) Biocompatibility Investigation: A Comparative Study in Different Human Cell Lines.
    Valentini F; Mari E; Zicari A; Calcaterra A; Talamo M; Scioli MG; Orlandi A; Mardente S
    Int J Mol Sci; 2018 Apr; 19(5):. PubMed ID: 29710799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The uses of transcriptomics and lipidomics indicated that direct contact with graphene oxide altered lipid homeostasis through ER stress in 3D human brain organoids.
    Liu X; Yang C; Chen P; Zhang L; Cao Y
    Sci Total Environ; 2022 Nov; 849():157815. PubMed ID: 35931159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene Oxide Based Metallic Nanoparticles and their Some Biological and Environmental Application.
    Khan AAP; Khan A; Asiri AM; Ashraf GM; Alhogbia BG
    Curr Drug Metab; 2017; 18(11):1020-1029. PubMed ID: 29034831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular localization and toxicity of graphene oxide and reduced graphene oxide nanoplatelets to mussel hemocytes in vitro.
    Katsumiti A; Tomovska R; Cajaraville MP
    Aquat Toxicol; 2017 Jul; 188():138-147. PubMed ID: 28521151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Graphene on Nonneuronal and Neuronal Cell Viability and Stress.
    Rastogi SK; Raghavan G; Yang G; Cohen-Karni T
    Nano Lett; 2017 May; 17(5):3297-3301. PubMed ID: 28383278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic, but not non-magnetic, reduced graphene oxide in spinal cord increases nociceptive neuronal responsiveness.
    Manzo LP; Ceragioli H; Bonet IJ; Nishijima CM; Vieira WF; Oliveira EC; Destro-Filho JB; Sartori CR; Tambeli CH; Parada CA
    Nanomedicine; 2017 Jul; 13(5):1841-1851. PubMed ID: 28315477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic choline-like graphene oxide composites for neurite sprouting and outgrowth.
    Tu Q; Pang L; Wang L; Zhang Y; Zhang R; Wang J
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13188-97. PubMed ID: 24313218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress.
    Liu S; Zeng TH; Hofmann M; Burcombe E; Wei J; Jiang R; Kong J; Chen Y
    ACS Nano; 2011 Sep; 5(9):6971-80. PubMed ID: 21851105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved In Vitro and In Vivo Biocompatibility of Graphene Oxide through Surface Modification: Poly(Acrylic Acid)-Functionalization is Superior to PEGylation.
    Xu M; Zhu J; Wang F; Xiong Y; Wu Y; Wang Q; Weng J; Zhang Z; Chen W; Liu S
    ACS Nano; 2016 Mar; 10(3):3267-81. PubMed ID: 26855010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.