These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 2736064)

  • 1. Role of context in the expression of learning-induced plasticity of single neurons in auditory cortex.
    Diamond DM; Weinberger NM
    Behav Neurosci; 1989 Jun; 103(3):471-94. PubMed ID: 2736064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid development of learning-induced receptive field plasticity in the auditory cortex.
    Edeline JM; Pham P; Weinberger NM
    Behav Neurosci; 1993 Aug; 107(4):539-51. PubMed ID: 8397859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thalamic short-term plasticity in the auditory system: associative returning of receptive fields in the ventral medial geniculate body.
    Edeline JM; Weinberger NM
    Behav Neurosci; 1991 Oct; 105(5):618-39. PubMed ID: 1815615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of receptive field plasticity in the auditory cortex of the guinea pig during instrumental avoidance conditioning.
    Bakin JS; South DA; Weinberger NM
    Behav Neurosci; 1996 Oct; 110(5):905-13. PubMed ID: 8918994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency-specific receptive field plasticity in the medial geniculate body induced by pavlovian fear conditioning is expressed in the anesthetized brain.
    Lennartz RC; Weinberger NM
    Behav Neurosci; 1992 Jun; 106(3):484-97. PubMed ID: 1616615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic effects of blocking tone conditioning on the rat auditory system.
    Poremba A; Jones D; Gonzalez-Lima F
    Neurobiol Learn Mem; 1997 Sep; 68(2):154-71. PubMed ID: 9322258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Associative retuning in the thalamic source of input to the amygdala and auditory cortex: receptive field plasticity in the medial division of the medial geniculate body.
    Edeline JM; Weinberger NM
    Behav Neurosci; 1992 Feb; 106(1):81-105. PubMed ID: 1554440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classical conditioning rapidly induces specific changes in frequency receptive fields of single neurons in secondary and ventral ectosylvian auditory cortical fields.
    Diamond DM; Weinberger NM
    Brain Res; 1986 May; 372(2):357-60. PubMed ID: 3708366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Receptive field plasticity in the auditory cortex during frequency discrimination training: selective retuning independent of task difficulty.
    Edeline JM; Weinberger NM
    Behav Neurosci; 1993 Feb; 107(1):82-103. PubMed ID: 8447960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: II. Secondary field (AII).
    Diamond DM; Weinberger NM
    Behav Neurosci; 1984 Apr; 98(2):189-210. PubMed ID: 6721922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: I. Primary field (AI).
    Weinberger NM; Hopkins W; Diamond DM
    Behav Neurosci; 1984 Apr; 98(2):171-88. PubMed ID: 6721921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discriminative long-term retention of rapidly induced multiunit changes in the hippocampus, medial geniculate and auditory cortex.
    Edeline JM; Neuenschwander-el Massioui N; Dutrieux G
    Behav Brain Res; 1990 Jul; 39(2):145-55. PubMed ID: 2167693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Habituation produces frequency-specific plasticity of receptive fields in the auditory cortex.
    Condon CD; Weinberger NM
    Behav Neurosci; 1991 Jun; 105(3):416-30. PubMed ID: 1863363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term retention of learning-induced receptive-field plasticity in the auditory cortex.
    Weinberger NM; Javid R; Lepan B
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2394-8. PubMed ID: 8460150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcortical adaptive filtering in the auditory system: associative receptive field plasticity in the dorsal medial geniculate body.
    Edeline JM; Weinberger NM
    Behav Neurosci; 1991 Feb; 105(1):154-75. PubMed ID: 2025387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remodeling the cortex in memory: Increased use of a learning strategy increases the representational area of relevant acoustic cues.
    Bieszczad KM; Weinberger NM
    Neurobiol Learn Mem; 2010 Sep; 94(2):127-44. PubMed ID: 20434577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unit responses of the auditory cortex of waking cats at rest and after defensive conditioning.
    Dumenko VN; Sachenko VV
    Neurosci Behav Physiol; 1981; 11(4):406-12. PubMed ID: 7343881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala.
    Quirk GJ; Armony JL; LeDoux JE
    Neuron; 1997 Sep; 19(3):613-24. PubMed ID: 9331352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in evoked potentials during differential inhibition.
    Sakhiulina GT
    Neurosci Behav Physiol; 1982; 12(1):71-5. PubMed ID: 7177357
    [No Abstract]   [Full Text] [Related]  

  • 20. Sensitization induced receptive field plasticity in the auditory cortex is independent of CS-modality.
    Bakin JS; Lepan B; Weinberger NM
    Brain Res; 1992 Apr; 577(2):226-35. PubMed ID: 1606497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.