These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 27362)
21. Conformational properties of adenylyl-3' leads to 5'-adenosine in aqueous solution. Kondo NS; Danyluk SS Biochemistry; 1976 Feb; 15(4):756-68. PubMed ID: 1247532 [TBL] [Abstract][Full Text] [Related]
22. [Nature of the difference between deoxyribo- and riboderivatives of adenosine phosphates according to nuclear magnetic resonance date]. Zenin SV Dokl Akad Nauk SSSR; 1975 Apr; (5):1219-21. PubMed ID: 1171003 [No Abstract] [Full Text] [Related]
24. Some hydrodynamic and optical properties of polyribonucleotides. Chen GC; Yang JT Biophys Chem; 1973 Dec; 1(2):62-72. PubMed ID: 4371888 [No Abstract] [Full Text] [Related]
25. [Nuclear magnetic resonance study of the conformation of nucleotides, oligonucleotides, and their analogs in solution. IV. Syn--anti-equilibrium in aqueous solutions of 2'-deoxynucleosides and nucleotides]. Bobruskin ID; Kirpichnikov MP; Pokrovskaia MIu; Florent'ev VL Mol Biol (Mosk); 1980; 14(4):830-4. PubMed ID: 6968398 [TBL] [Abstract][Full Text] [Related]
26. Conformational properties of dinucleoside monophosphates in solution: dipurines and dipyrimidines. Lee CH; Ezra FS; Kondo NS; Sarma RH; Danyluk SS Biochemistry; 1976 Aug; 15(16):3627-39. PubMed ID: 952881 [TBL] [Abstract][Full Text] [Related]
27. Oligonucleotide conformations. (5) NMR and relaxation studies on GpU and UpG at neutral pH. Chachaty C; Yokono T; Tran-Dinh S; Guschlbauer W Biophys Chem; 1977 Jan; 6(2):151-9. PubMed ID: 15669 [TBL] [Abstract][Full Text] [Related]
28. Determination of the solution conformation of dephospho coenzyme A by nuclear-magnetic-resonance spectroscopy with lanthanide probes. A method for analysis when more than one complex species is present. Fazakerley GV; Linder PW; Reid DG Eur J Biochem; 1977 Dec; 81(3):507-14. PubMed ID: 598379 [TBL] [Abstract][Full Text] [Related]
29. Interaction of La (III) and Tb (III) ions with purine nucleotides: evidence for metal chelation (N-7-M-PO3) and the effect of macrochelate formation on the nucleotide sugar conformation. Tajmir-Riahi HA Biopolymers; 1991 Aug; 31(9):1065-75. PubMed ID: 1664746 [TBL] [Abstract][Full Text] [Related]
30. Determination of the syn-anti equilibrium of some purine 3':5'-nucleotides by nuclear-magnetic-relaxation perturbation in the presence of a lanthanide-ion probe. Fazakerley GV; Russell JC; Wolfe MA Eur J Biochem; 1977 Jun; 76(2):601-5. PubMed ID: 196852 [TBL] [Abstract][Full Text] [Related]
31. A conformational study of nucleic acid phosphate ester bonds using phosphorus-31 nuclear magnetic resonance. Haasnoot CA; Altona C Nucleic Acids Res; 1979 Mar; 6(3):1135-49. PubMed ID: 440971 [TBL] [Abstract][Full Text] [Related]
32. The effect of (2'-5') and (3'-5') phosphodiester linkages on conformational and stacking properties of cytidylyl-cytidine in aqueous solution. Ezra FS; Kondo NS; Ainsworth CF; Danyluk SS Nucleic Acids Res; 1976 Oct; 3(10):2549-62. PubMed ID: 995643 [TBL] [Abstract][Full Text] [Related]
33. Interactions of 1,12-diamino-4,9-dioxadodecane (OSpm) and Cu(II) ions with pyrimidine and purine nucleotides: adenosine-5'-monophosphate (AMP) and cytidine-5'-monophosphate (CMP). Lomozik L; Gasowska A; Krzysko G J Inorg Biochem; 2006 Nov; 100(11):1781-9. PubMed ID: 16899296 [TBL] [Abstract][Full Text] [Related]
34. Nuclear magnetic resonance studies of hydrogen bonded complexes of oligonucleotides in aqueous solution. I. pdG-dC and pdG-dT. Krugh TR; Young MA Biochem Biophys Res Commun; 1975 Feb; 62(4):1025-31. PubMed ID: 1120083 [No Abstract] [Full Text] [Related]
35. Nuclear magnetic resonance studies of the solution conformation of nucleoside diphosphohexoses and their components. Lee CH; Sarma RH Biochemistry; 1976 Feb; 15(3):697-704. PubMed ID: 1252419 [TBL] [Abstract][Full Text] [Related]
36. Phosphorus-31 Fourier transform nuclear magnetic resonance study of mononucleotides and dinucleotides. 2. Coupling constants. Cozzone PJ; Jardetzky O Biochemistry; 1976 Nov; 15(22):4860-5. PubMed ID: 990248 [TBL] [Abstract][Full Text] [Related]
37. The interactions between nucleic acids and polyamines. I. High resolution carbon-13 and hydrogen-1 nuclear magnetic resonance studies of spermidine and 5'-AMP. Bunce S; Kong ES Biophys Chem; 1978 Sep; 8(4):357-68. PubMed ID: 728538 [TBL] [Abstract][Full Text] [Related]
38. 1H NMR studies on the conformational characteristics of 2-thiopyrimidine nucleotides found in transfer RNAs. Yokoyama S; Yamaizumi Z; Nishimura S; Miyazawa T Nucleic Acids Res; 1979 Jun; 6(7):2611-26. PubMed ID: 379825 [TBL] [Abstract][Full Text] [Related]
39. Carbon-13 NMR in conformational analysis of nucleic acid fragments. 3. The magnitude of torsional angle epsilon in d(TpA) from CCOP and HCOP NMR coupling constants. Lankhorst PP; Haasnoot CA; Erkelens C; Altona C Nucleic Acids Res; 1984 Jul; 12(13):5419-28. PubMed ID: 6087285 [TBL] [Abstract][Full Text] [Related]
40. Phosphorus-31 Fourier transform nuclear magnetic resonance study of mononucleotides and dinucleotides. 1. Chemical shifts. Cozzone PJ; Jardetzky O Biochemistry; 1976 Nov; 15(22):4853-9. PubMed ID: 10961 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]